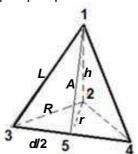
# Доверяй, но проверяй (продолжение).

Где мера, там и вера...


Не будем вдаваться в детали публикации П. Сергиенко [1]. С её многочисленным наслоением субъективных оценок, таких как: русофобское отношение к "Русскому проекту", извращение смысла и содержания триалектического метода и триалектики, как науки (?), вульгарное толкование, рейдерский захват чужих идей, непримиримая борьба разделенных народов и т.п. Всё это не имеет ни малейшего смысла и значения к математическим выкладкам, посвященным составлению-"склеиванию" додекаэдра из двенадцати правильных пятиугольных пирамид. Внося свои очередные коррективы, он вновь и вновь продолжает не приоткрывать, а ещё глубже "закапывать" основные идеи, порождая новые неточности и принципиальные ошибки.

Поэтому без особых подробностей, в сухом остатке и в дополнение к работам [2-4]...

## Масштабирование (сжатие) эллипсоида.

При равномерном сжатии эллипсоидной сферы с полуосями  $\Phi$  и  $\sqrt{\Phi}$  в сферу шара автор странным образом переходит от "метатреугольника" ( $\Delta$ -Кеплера)  $\sqrt{\Phi}$ -{1,  $\sqrt{\Phi}$ ,  $\Phi$ } с геометрической пропорцией сторон, к другому прямоугольному треугольнику со сторонами:

 $\{h, R, L = d\} = \{0,5\cdot(\Phi + \sqrt{\Phi}), h\cdot\Phi, h\cdot\sqrt{(1+\Phi^2)}\}\approx \{1.445, 2.338, 2.749\}, (1)$  где  $\Phi = (\sqrt{5} + 1)/2$  – константа золотого сечения; обозначения приведены на рисунке прямоугольного тетраэдра – пятой части правильной пятиугольной пирамиды, как будущей составной части додекаэдра при правильном построении.



Конечно, так не бывает. После сжатия в сферу полуоси эллипсоида (в сечении  $\Delta 123$ ), как минимум, должны стать равными радиусу сферы, или в описанном случае  $\sqrt{\Phi \cdot \{1, \sqrt{\Phi}, \Phi\}} \to \sqrt{\Phi \cdot \{1, 1, \sqrt{2}\}}$ .

Поэтому, несмотря на все ошибочные авторские ухищрения (прошлые и настоящие), "метатреугольник" или  $\Delta$ -Кеплера никак не встраивается в тетраэдр и соответственно в пирамиду с равенством L=d.

Кроме того, следует различать трехосный эллипсоид с тремя разными полуосями, и эллипсоидную поверхность вращения, когда две из трех полуосей равны. Автор не проводит такое различие, чем ещё больше запутывает своё изложение.

## Пирамиды с равными ребрами.

Рассмотрим правильную n-угольную пирамиду, в которой боковые ребра L равны ребрам d основания.

Без потери общности рассуждений примем L = d = 1. Обозначим угол  $\alpha = \pi / n$ .

Вычислим радиусы вписанной r и описанной R окружностей в основании пирамиды, а также её высоту h и характерные отношения.

| n | $r = d / 2 tg\alpha$ | $R = d / 2\sin\alpha$ | $h = \sqrt{(d^2 - R^2)}$ | L/h   | h/R                |
|---|----------------------|-----------------------|--------------------------|-------|--------------------|
| 2 | 0                    | 0,5                   | √3/2 ≈ 0,866             | 1,155 | 1,732              |
| 3 | √3/6 ≈ 0,289         | 1/√3 ≈ 0,577          | √6/3 ≈ 0,816             | 1,225 | $1,414 = \sqrt{2}$ |
| 4 | 0,5                  | 1/√2 ≈ 0,707          | 1/√2 ≈ 0,707             | 1,414 | 1                  |
| 5 | 0,688                | 0,851                 | 0,526                    | 1,902 | $0,618 = \Phi$     |
| 6 | 0,866                | 1                     | 0                        | _     | 0                  |

При n=2 пирамида вырождается в два совмещенных и вертикально расположенных равносторонних треугольника.

При n=6 тело вырождается в правильный шестиугольник на плоскости.

Для n=5 радиусы равны  $r=0,5\cdot\Phi\cdot\sqrt{(2-\phi)^{-1}},\ R=\sqrt{(2-\phi)^{-1}},\ rдe\ (\Phi,\ \Phi)=(\sqrt{5}\pm1)/2-$  константы золотого сечения.

Как видно, во всех случаях имеет место неравенство  $L/h \neq h/R$ .

Другими словами, геометрическая (непрерывная) пропорция сторон  $\Delta 123$  отсутствует. Происходит это за счет введения "сильного" равенства L=d.

То есть приходится выбирать: или равенство всех ребер пирамиды с её боковыми гранями в виде равносторонних треугольников, или пропорция сторон, характерная для треугольника Кеплера, включая его частную реализацию  $\sqrt{\Phi}$  { 1,  $\sqrt{\Phi}$ ,  $\Phi$  }.

Но дело не только в этом. Из пятиугольных пирамид с параметрами L=d принципиально нельзя собрать додекаэдр. А именно эта задача ставилась в работе [1].

Объем составного геометрического тела Сергиенко, непонятно какого названия, с параметрами (1) равен

$$V = 10 \cdot r \cdot R \cdot h = 10 \cdot \Phi^2 \cdot \cos \alpha \cdot h^3 \approx 63.9.$$

В то время как объем додекаэдра для значения ребра d должен составить  $V = (15 + 7\sqrt{5}) \cdot d^2/4 \approx 159.1$ .

Несовпадение очевидно. И взывание к «потомкам <которым> еще предстоит оценить достоинства этого доказательства» [1] здесь бессильно.

Вместе с тем додекаэдр легко собирается из двенадцати равных пирамид.

#### Составной додекаэдр из 12 одинаковых пирамид.

Сформируем правильную пятиугольную пирамиду, из которой путем сочетания одинаковых 12 тел (по числу граней додекаэдра) с общей вершиной, можно образовать сам додекаэдр.

Без потери общности рассуждений примем d = 1,  $\alpha = \pi/5$ . Радиус сферы, вписанной в додекаэдр, равен высоте пирамиды [5, с. 104; oeis.org/A237603]:

$$h = \sqrt{(10 + 22/\sqrt{5}) \cdot d/4} = \cos^2 \alpha / \sin \alpha = 1/\sin \alpha - \sin \alpha = \Phi^2 / (4 \cdot \sin \alpha) \approx 1{,}114.$$

Радиус описанной сферы равен боковому ребру пирамиды  $L = (\sqrt{3} + \sqrt{15}) \cdot d/4 \approx 1,401$  с минимальным полиномом  $x^4 - (6/4)^2 x^2 + (3/4)^2$ .

Как видим, никакого равностороннего треугольника на боковой грани нет:  $L \neq d$ .

Было бы крайне удивительно, если бы он существовал.

Также нет и никакого встроенного метатреугольника или треугольника Кеплера.

Отношения образующих параметров равны  $L/h \approx 1,258$  и  $h/R \approx 1,309$ .

Именно с такими отношениями отрезков и только с таким (!) из 12 пирамид можно составить (собрать) геометрическое тело полноценного додекаэдра. С тщательной подгонкой, без пустот и наложений, и объемом  $\sqrt{(25+10\sqrt{5})} \cdot d^2 \cdot h = (15+7\sqrt{5}) d^3/4$ .

К слову, первая формула здесь получена путем обычного сложения объемов двенадцати пятиугольных пирамид с ребром в основании d и высотой h.

#### Вместо заключения.

Как показано выше, n-угольные пирамиды с боковыми гранями — равносторонними треугольниками — строятся довольно просто (2 < n < 6). Однако в них нарушается пропорциональность параметров {h, R, L} образующего конуса. Кроме того, из таких 5-

угольных пирамид невозможно составить полноценный додекаэдр без пустот и наложений.

Чтобы получить правильный составной додекаэдр, отношение бокового ребра к высоте пирамиды должно составить  $L/h = (\sqrt{3} + \sqrt{15})/\sqrt{(10 + 22/\sqrt{5})} \approx 1,258$ .

В пятиугольной пирамиде приходится выбирать одно из трех: либо геометрическую (непрерывную) пропорцию сторон треугольника Кеплера, либо равенство всех ребер, либо единственно возможное отношение L /  $h \approx 1,258$  для последующей сборки додекаэдра.

И любая "триалектика" здесь, увы, бессильна. В какую бы национальную символику самоидентификации её не облачали.

В этой связи напомним авторскую оценку [1]: «Главный методологический вопрос "триалектики-триадологии" — никем ранее до Василенко не ставился. Это уже его выдумка». —Тем самым он глубоко заблуждается, хотя нужно отдать должное, применил наиболее мягкий синоним: выдумка — вымысел, измышление, ложь, обман, фантазия...

В работе [4] мы уже отмечали, что "триалектика" является старой, как мир, триадой.

Диалектика (искусство спорить, вести рассуждение, учение) не имеет никакого отношения к бинарности. Чтобы на этой основе вводить в "лектику" приставку "три.." вместо "диа-" и проводить далее параллели с тринитарной идеей.

Именно поэтому «Гегель свой метод применения принципа триады назвал диалектическим» [6, с. 697].

"Триалектика" – составная часть общей диалектической триадологии. И не более того.

Это следует из многих научных публикаций, в частности, прекрасной монографии Е. Борзовой [7]. Её мало цитировать и/или комментировать. Нужно просто читать, вникать и упорядочивать свои ячейки сознания. Триадология изложена обстоятельно, профессионально и качественно.

"Ищите, и найдете... " (Матф.7:7).

#### Литература:

- 1. Сергиенко П.Я. Русский проект математического моделирования гармоничных отношений и его искажения // AT. М.: Эл. № 77-6567, публ.24337, 10.03.2018. URL: trinitas.ru/rus/doc/0016/001f/00163647.htm.
- 2. Василенко С.Л. В погоне за мега-призраками // AT. М.: Эл. № 77-6567, публ.24276, 14.02.2018. URL: trinitas.ru/rus/doc/0016/001f/00163618.htm.
- 3. Василенко С.Л. Доверяй, но проверяй // AT. М.: Эл. № 77-6567, публ.24292, 20.02.2018. URL: trinitas.ru/rus/doc/0016/001f/00163627.htm.
- 4. Василенко С.Л. К самоучителю мудрствований по "Триалектике" // AT. М.: Эл. № 77-6567, публ.23125, 05.03.2017. URL: trinitas.ru/rus/doc/0016/001e/00163224.htm.
- 5. Сборник основных теорем геометрии / Авт.-сост.: И.С. Слонимская, Л.И. Слонимский. Сер. Карманный справочник школьника. Геометрия. М.: АСТ, 2008. 127 с.
- 6. Лисин А.И. Идеальность. Реальность идеальности. Ч.1. М.: Информациология, "РеСК", 1999. 832 с.
- 7. Борзова Е.П. Триадология / Науч. ред. И.Ф. Кефели. СПб.: СПбКО, 2013. 579 c.