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The mechanics of an orientable point (point with ”spin”) based on 3D and 4D Frenet equations is
considered. In such mechanics there is an opportunity to describe formally any physical trajectory of
a particle with own rotation. We use anholonomic rotational coordinates (Euler angles) as elements
of internal space of the mechanics which generate a rotational relativity. The groups of transfor-
mations of the mechanics of an orientable point form Poincare’s group with semidirect product of
translations and rotations, so translational and rotational momentums appear dependent from each
other. Connection of the curve torsion with Ricci rotational coefficients is shown and rotational
metric is entered. Equivalence between equations of motion 4D oriented point and geodesic equa-
tions of absolute parallelism geometry is established. The space of events an arbitrary accelerated
4D frame of reference, which has 10 degrees of freedom, is described by Cartan structure equations
of absolute parallelism geometry A4(6). It represent 10D coordinate space in which 4 translational
coordinates xo = ct, ©1 = x, T2 = y,r3 = z describe motion of the origin O 4D orientable point
and 6 angular coordinates 1 = ¢, Y2 =¥, Y3 =0, s = V., w5 = Vy, s = ¥, describe change
of its orientation.

The structural equations of absolute parallelism geometry A4(6), represent an extended set of
Einstein-Yang-Mills equations with the gauge translations group T4 defined on the base z* and with
the gauge rotational group O(1.3), defined in the fibre ¢?,. The sources in these equations are defined
through the torsion (torsion field) of A4(6) geometry. The received system of the equations represents
generalization vacuum Einstein’s equations on a case when sources have geometrical nature. On
the basis of the Vaidya-like solution of the Einstein-Yang-Mills equations correspondence with the

Einstein’s equations is established.

PACS numbers:

I. INTRODUCTION

Einstein proposed the following approach to the
construction of the fundamental theory of things in
the microworld. On the left-hand side of his famous
equations

1 8rG
ij - igij = Tij (1)

one finds a purely geometrical quantity (the Einstein
tensor G, = Rjm — %gij), and on the right-hand
side, the energy-momentum tensor T},, for mater,
which was, so to speak, introduced ”manually.” In
Einstein’s picture, mater appears thus against the
background of a curved space-time as an entity inde-
pendent of space-time.

Einstein was not satisfied with the phenomenolog-
ical representation of T},,, since: ”The right-hand
side includes all that cannot be described so far in
the unified field theory. Of course, not for a fleeting
moment [ have had any doubt that such a formula-
tion is just a temporary answer, undertaken to give
to general relativity some closed expression. This
formulation has been in essence nothing more that
the theory of the gravitation field, which has been
separated in a somewhat artificial manner from the

unified field of a yet unknown nature!.”

A way to remove arbitrariness in the selection of
the energy-momentum tensor was seen by Einstein in
the geometrization of the energy-momentum tensor
of matter on the right-hand side of Einstein’s equa-
tions (1). Einstein believed that the geometrization
of the energy-momentum tensor of matter should re-
sult in the geometrization of the matter field that
make it up. For Einstein the geometrization of mat-
ter fields implied the construction of a fundamen-
tal theory of phenomena in the microworld that is
in conformity with relativity principle. 30 years he
tried constructing a ”reasonable general relativistic
theory,” and within its framework a ”more advanced

quantum theory?2.”

In the present work we offer to geometrize the right
part of the equations (1), using instead of a mate-
rial point of general relativistic Einstein’s mechan-
ics more the general object - an orientable material
point. We shall understand any accelerated refer-
ence frame, formed by unit orthogonal vectors as an
orientable material point. In 3D translational coor-
dinates space the orientable point has 6 degrees of
freedom, in 4D translational coordinate space - ten.
Generalization of the Einstein’s theory offered by us
allows analytically to describe Descartes’s approved
idea, that any real motion is a rotation.



II. 3D ORIENTED POINT AND
GENERALIZATION OF THE EQUATIONS OF
NEWTON’S MECHANIC

In 1847 French mathematician Jean F. Frenet in
his thesis has written equations, describing motion
of oriented point in the 3D space along an arbi-
trary curve x = x(s), where s — the arc length.
Equations are written for the three orthogonal unit
vectors t, n and b with orthogonality conditions
t> =n? =b%2 =1, tn =nb = bt = 0. The tan-
gent unit vector t is choused as tangent to the curve
at point M (fig.1), pointing the direction of motion.
The normal unit vector n is the derivative of t with
respect to the arc length parameter of the curve, di-
vided by its length and the binormal unit vector b
is defined as the cross product b =t x n. For these
vectors Frenet’s equations look like?

%’s‘ —t. (2)

& kom 3)

% = —k(s)t +x(s)b (4)
% = —x(s)n (5)

where k(s) - curvature of the curve and x(s) - torsion
of the curve. Frenet was the first who has shown that
arbitrary curve in 3D flat space is determined by two
scalar parameters - curvature x(s) and torsion x(s).

FIG. 1: Trajectory of the 3D oriented point

Differentiating equations (2) on s and using (3)-
(5) and orthogonality conditions, we shall get the
equations

d*x dk(s)

TE T g K2t +K(s)x(s)b, (7

describing motion of the triad origan O (motion of
point M).

For comparison of the equations (6) (7) with the
equations of Newton’s mechanics, it is convenient to
pass in them to time parameter ¢

d’x

o at + kv’n | (8)

d3x da 5 4 dk

—— = (— = k2t + Bavk+v* —)n+rxv’b, (9
where v = ds/dt — absolute velocity and a = dv/dt-
— tangent acceleration. Multiplying these equations
on mass m, we shall receive the translational equa-
tions of motion of an orientable point with the law
of transformation infinitesimal vector dz,,

3%/

dry = ——dxg,
T

a=1,23

where matrixes 9z, /0x, form the group 3D trans-
lations T'(3). The equations (8) are similar to the
equations of Newton mechanics, but have geometri-
cal nature. A choice of curvature k and parameter s
it is possible to describe formally any physical trajec-
tory of a particle in 3D space, moving under action
of force F = m(at + xv?n). The equations (9) have
no analogues in the Newton mechanic as contain the
third derivative of coordinate on time. In electrody-
namics we known equations of motion of radiating
charge

e 22 ...
x=cE+ —[xH|] + — X 10
m¥ =B+ SEH 425K, (10)
which contain the third derivative of coordinate on
time. Using (9) we have for reaction force of the
radiation we have

22  da
EERAYT

dr

Fra =
¢ dt

— k20t 4 (3avk+v? — )n+rxvibl.

(1)
From these equations one can see that the reaction
force of the radiation in electrodynamics has com-
plex structure. It contains terms generated not only
by external electromagnetic fields, but also by tor-
sion x(t), created by spin of an electron. The last
term in right hand side of equation (11) contain

torsion Y, therefore accelerated particle possessing a



spin, radiates at the same time electromagnetic and
electro-torsion fields (fields of Ricci torsion). This
theoretical conclusion is excellently confirmed by nu-
merous experimental facts?. It is necessary to note
that until now special experiments on research of
structure of the reaction force of the radiation were
not carried out. Only the surprising N.Tesla de-
vices are known permitting to transmit electromag-
netic energy by a way, not explained by conventional
electrodynamics!'®. The system of the equations (8)
(9) describes the motion of the origin of an orientable
material point taking into account of its spin (torsion
x) and, certainly, generalizes the equations of New-
ton’s mechanics.

III. INTERNAL SPACE OF THE
ANHOLONOMIC ROTATIONAL
COORDINATES AND ROTATIONAL
RELATIVITY

During infinitesimal displacement of point M along
the curve the triad of Frenet’s vectors simultaneously

|

change their orientation in space. For description of
the change it is convenient to introduce anholonomic
angular coordinates

Y ="L(ecer), 0Z(e3ez),

— Euler angles (see (fig.1a)). Let’s assume, that with
a point M of a curve the triad with motionless unit
vectors e, ez, e is connected. Let’s designate com-
ponents of motionless Frenet triad as

’ ’ ’
t=e, n=ey, b=ej.

At displacement of the origin O of Frenet triad along a curve from a point M in a point M’, there is a
rotation vectors of Frenet triad (fig. 2a). Projecting the axes of a mobile triad t, n, b, located in a point M’
on the motionless triad connected with a point M, we find

t= ell = e1(cos ¢ cos ) — sin psiny cos f) + ez (sin p cos Y + cos psin Y cos ) + ez sin sin §,

n= e; = —e1(cos psiny + sin p cos 1 cos ) — ex(sin psin — cos p cos Y cos ) + ez cos ¥ sin b,

!
b =e; =e;sinpsinf — ez cospsinf + ez cos .

Expressing the components of tangent vector t =
€'; = dx/ds through angular variables, we have

dx

o= cos ¢ cosy — sinp siny cosb, (12)
dy _ . .
75 = Sine cos ) + cosp siny cosf, (13)
s
d
d—z =siny siné. (14)

Differentiating the third components of vectors t and
n and second component of the vector b, we get "ro-
tational equations of motion” as follows

dp _  sing
ds  Xsm@’

(15)

(

dip .

s X sin ctgb, (16)
dp
=5 = X cos . (17)

According to the equations (15)-(17) curvature x and
torsion y cause rotation of Frenet triad, therefore
more correctly to name their first y; = x and sec-
ond yx = x torsion of a curve. The system of the
equations (12)-(17) represents system Cauchy for six
unknown functions z, y, z, ¢, ¥, 6 nd supposes one
and only one solution in the form of regular functions

z=u(s), y=y(s), z=2z(s), ¢ =p(s)

, Y= ’gb(S), 0= 9(5>



dx = e dp+e.do+e.dy

FIG. 2: Changing of the orientation of an oriented point
at displacement of point M on dM; b) according to Eu-
ler’s theorem an infinitesimal rotations around the three
axes it is possible to replace by one rotation with the an
infinitesimal angle.

satisfying to the equations (12)-(17) and entry con-
ditions

T = o, Y ="Yo, 2= 20, ¥ = Yo, w:w()v 9:90

for s = sg. Entry conditions have simple geometrical
sense. Initial coordinates x = xg, ¥ = Yo, 2 = 20
define position of an original point My a curve , and
Euler’s angles ¢ = ¢q, ¥ = 1y, 0 = 6y - initial ori-
entation of the attached triad. Three Euler’s angles
form in each point M of a curve internal space an-
holonomic rotational coordinates, which, as it follows
from the equations (12)-(17), define the physical dy-
namics of an orientable material point. Passing to
the time parameter ¢ in the equations (12)-(14), we
will get

v (p, 1, 0) = dr _ v(cos @ costh —sinp siny cosh),

dt
(18)
vy(p, ¥, 0) = % = v(sinp cosy+cosp siny cosb),
(19)
v, (¥, 0) = % = v(siney sinf), (20)

wherev = ds/dt — absolute velocity. Dependence of
the components of linear velocity from Euler’s an-
gels in these equations allows us to approve, that the
system of the equations (12)-(17) gives the analyt-
ical description of Descartes idea that any physical
motion is rotation. Let’s write down a Frenet triad
as

@

Where holonomic index « accepts values 1, 2, 3, and
index A — local anholonomic index accepts values
1, 2, 3, designating numbers of a triad vectors. If on
the holonomic coordinate index a the triad e”, has
the tensor law of transformation in group of transla-
tions T'(3)

Ox o

A 3xa/ A ||
O0xq

e, = e
* O0xq

a=1,23, | e T(3), (21)

that on the anholonomic local index A triad e, it will
be transformed in group of local three-dimensional
rotations O(3)

e =AY, A=1,2 3 A ec0B3). (22
We see, that use of the rotational coordinates as ele-
ments of space of events generates a rotational rela-
tivity in nonrelativistic mechanics. This is one more
fundamental distinction between Newton mechanics
and the mechanics of an orientable point. At the
description of motion of the Frenet triad the group
T(3) and O(3)T form Poincare’s group with semidi-
rect product of translations and rotations, as rotation
of vectors of a triad causes translation of its origin —
M points of M and vice versa. This fact substantially
distinguishes mechanics of an orientable point from
the Newtonian mechanics, as in the new mechanics
translational and rotational momentums appear de-
pendent from each other.

IV. CONNECTION OF y;(s) AND y(s)2
WITH RICCI ROTATIONAL COEFFICIENTS
AND ROTATIONAL METRIC

Statement 1. Torsion x; and x2 are independent
components of Ricci rotation coefficients. Proof.
Let’s consider six-dimensional manifold of coordi-
nates x1, T2, T3, ©1, P2, p3. It is convenient to present
it as a vector bundle with the base formed by trans-
lational coordinates x1,x9,x3 (let it be Cartesian
coordinates) and fibre, specified at each point z,
(a = 1,2,3) by three orthonormalized Frenet’s ref-
erence vectors

eq, A=1,2,3, (23)

where A means number of the reference vector. Ac-
cording to Euler’s theorem, an infinitesimal rota-
tions around the three axes of reference vector (23)
is equivalent to one rotation with angle dx around a
definite axis passing through the origin of the axis O
(see (fig.2b) . It is possible to define the infinitesimal
rotation as

dx = dxey,



where vector e, is directed along instantaneous ro-
tation axis of reference system. This direction is
selected so that, if one looks from the end of the
vector e, e at a fixed point O, then the rotation
is made counter-clockwise (right-hand reference sys-
tem). Let’s note, that the vector x does not exist,
as turn on a finite angle is not commutative. There-
fore for an infinitesimal rotation we have entered a
designation dy instead of dyx. Unlike a polar vector
holonomic translational coordinates dx, infinitesimal
rotation

dx = esdy + ecdf + ez dyp (24)

is an axial vector. An infinitesimal rotation of
Frenet’s reference vectors e, upon rotation dx has
the form

des = [dxea]. (25)
If we divide (25) by ds, then we shall get

dey dx
_— = |—e = W.e 26
dS [dS A] [ J A]? ( )
where w = dx/ds - three-dimensional angular veloc-
ity of Frenet’s triad with respect to the instantaneous
axis. Writing down the orthogonality conditions for
Frenet’s reference vectors in the form

A a _ A 1 AZB
o Aa-ib-{y 475, @
Ap _sp_Jla=p
b) eaeA_aa_{Oa#ﬁv
A/B...=1,2,3, a,0,8=1,23,
where «, 6, 8... — holonomic coordinate indices, and

A, B... — anholonomic triad local indices; it is possible
to write down relations (25) and (26) as follows

deAa = dxﬁa e’%, (28)

deAa _ dxﬁa A

—a . 2
ds ds €8 (29)
Multiplying (28) and (29) by eﬁA, we get
B _pmB
dx", =T 5, dx7, (30)
de? dx”
[e] — ﬂ - A 1
ds Y gs €8 (31)

where we have defined the designation

a _ o A _ A«
Ty = €a€Tpy = —€5€%,

0
aTaﬂ’y = _Tﬁa'yv’7 = % (32%

The quantities (31)were first introduced by G.Ricci*
and since then they have been called Ricci rotation
coefficients. Using the orthogonality conditions (27)
and the rule of transformation to local indices

A _ A B
Tg,=eT%h,ep,

let’s rewrite equations (31) in local indices

det dx”
dsa = TA B’YEeBCE . (33)

Let’s chose vectors e, e®, and e®, so, that
they coincide with Frenet’s vectors, and thus the
vector e, = dz,/ds = t, satisfies the condition
tot® = 1. Then the equations (29) become the well-
known Frenet’s equations (3-5), in which

dz”
K =x1(s) = A 7 g5
dz”
X =x2(5) = T (3 —— . (34)

While deducing (3-5) from (29), we used the following
relations

dx?
= e 1y, e?l)egl) =1. (35)

From the relations (31) it is clear, that in
Frenet’s equations curvature and torsion are ex-
pressed through components of Ricci rotation coef-
ficients (28), that proves the Statement 1.

The Ricci rotation coefficients are the part of the
connection of absolute parallelism geometry® and
have an anti-symmetry on the two lower indices

Ty =~y

@ 1 «
Qﬁv = 75614(61%,7 - ea,ﬂ% (36)

which it is possible to call Ricci torsion. Let’s note,
ones more, that the curvature x and torsion x of
Frenet’s curve would be more correctly called the
first and second torsion, as they are both expressed
through components of Ricci torsion (36).

From (35) we can find ds = e,V dz® and

ds? = ea(l)daro‘eo‘(l)dma = dz“dzx, = dx®+dy*+dz>.

(37)



This translational metrics is set on group T(3) of
translational coordinates and defines geometry of the
3D euclidian space, in which the curve is embedded.
Besides as follows from (24) and (33), on the group
of rotational coordinates O(3) the rotational metrics
is define.

X° = dp? + dip? + db* = dxaﬁdxﬁa

=T%., T sda?da® = dr?, (38)

This metrics addresses in zero if the first and sec-
ond torsions (34) address to zero.

V. 4D ORIENTED POINT AND ABSOLUTE
PARALLELISM GEOMETRY

A 3D orientable material point is mathemati-
cal representation of an arbitrary accelerated three-
dimensional system of reference. Motion of such sys-
tem of reference is described by six equations as it has
six degrees of freedom. It would be possible to put
and solve the problem on what geometry possess the
space of events of an arbitrary accelerated 3D sys-
tems of reference. However, we consider as more im-
portant question — what geometry possess space of
events of an arbitrary accelerated 4D systems of ref-
erence or, that is the same, what the space of events
form the relative coordinates of the 4D orientable
material points? It is in advance possible to tell, and
it is obvious, that 4D an arbitrary accelerated system
of reference has 10 degrees of freedom, therefore, for
the description of its motion, it is necessary to use 10
coordinates. Leaning on experience, which we have
received at the description of the dynamics of an ar-
bitrary accelerated 3D system, we shall consider 10D
coordinate space in which 4 translational coordinates
ro = ct, r1 = x, T2 =y, T3 = z describe motion of
the origin O 4D orientable point and 6 angular co-
ordinates ¢1 = ¢, Y2 =V, p3 =10, Y1 =Vy, @5 =
¥y, @6 = VU, describe change of its orientation.

Consider a four-dimensional differentiable man-
ifold of 4D oriented points with translational coordi-
nates ¢ (i = 0,1,2,3 a = 0,1,2,3). Whit each
point of the manifold we connect four vectors e

(i = 0,1,2,3) and four covectors ejb with the or-
thogonality conditions
eaq',@ja = 5zja eaieib =0y (39)

Anholonomic tetrad e, defines the metric tensor of
the space

ik = Tabe®i€4, M = n** = diag(1 —1 —1 —1) (40)
and the translational Riemannian metric

ds? = nabe"’ieﬁdxidxk = gipdxidz®. (41)

Using the tensor (43), we can construct the Christofd
fel symbols

ik = 59" Gjmp & Gom.g = Gikom)- (42)

that transform following a nontensor law of transfor-

mation

o 92zk 9z Ozt 9z Oz K
JU 9z 0xd" dxk T Oz Oz k!

with respect to the coordinate transformations

(43)

.9t Oz
dxt = k

v azk | oz
were T'(4) — group of 4D translations. Now the Ricci

rotation coefficients (31) can be represented in the
form

=l e T(4).

Ty, = € Vie®, T = =€ Vie' o, Tijie = =Tk,
(44)
where Vy is a covariant derivative with respect to the
Christoffel Fj  Symbols. The rotational metric in the
new space can be written as

dr? = dx%dx®, = T4,T°, de*dz™ (45)

i, j.k..=0,1,2,3, a, b, ,c...=0,1,2,3.

Let we have an arbitrary curve in four-dimensional
Riemannian space with translational coordinates
2%, (i = 0,1,2,3). Then the curve is defined by three
scalar invariants x1, X2 X3, and in our case the four-
dimensional Frenet’s equations have

D;;Z) e, (46)
D;? 06 4 0@, (47)
D;;i) e e (48)

Dj? = xae®?. (49)

Here vectors e(z),e(}c),e(? and e(z) form a tetrad,

and D is the absolute differential with respect to the
four-dimensional Christoffel symbols (43).

Statement 2. Any curve of Riemannian space can
be considered as the geodesics of space of absolute

parallelism®, with equations of the form
Pzt dad dat . dad dok
ds2 I ds ds ik ds ds

(50)



Proof. Connection of absolute parallelism is de-
fined as®

Ay =T+ T, =ele®y = —e%e' gy (51)
These relations can be rewritten as follows

T = €' Ve, = —e%Vie',, (52)
where Vi - covariant derivative with respect to
Christoffel symbols. Multiplying equality (52) on
e (e7,) and using the orthogonality conditions (39)

let’s present (52) as follows

a) Vie®; = T‘Zkebj or b) Vie', =—T".¢,. (53)

Multiplying (41a) and (41b) on dz* /ds, we shall ob-
tain

De“, . dzF

dsj bk’ b] d (54)
Deia i dxk

&~ ilas (55)

Uncovering in equations (55) the absolute differen-
tial and supposing in them ei(o) = dxi/ds, we shall
obtain geodesics equations (50).

Changing in equations (54) indices on which there
is a contraction, we find

De?, 3 o dxj
ds? T WOR s

Choosing in these equations the Frenet’s tetrad and
writing down them component by component, we
have

©
De (0) <1>d$3
k1) eV (56)
DY) _ Lo, © 4’ +TY o @ 4’ 5
a2 =~ Lok gs Ptk g 67
DY _ Lo, o e’ 0 (3 da’ 5
T =T T
)
Dy _ ) @4
e (59)

Comparing equations (65)-(68) with equations (77)-
(80), we shall obtain

(0) d$j

J J
v =T, 55 T =18, 5

Toigs =T g

Since the quantities Tikj are defined through Ricd
torsion (see (52)), then, as it follows from relations
obtained above, is possible to geometrize any curves
of Riemannian space, using Ricci torsion.

The common symmetries os space of events of 4D
oriented point are determined as:

a)by transformation of the four holonomic trans-
lation coordinates x; , describing the motion of the
origin of an arbitrary accelerated 4D frame

Z al
o 9% 103 |5 i

e
9 61'7, i)

-l € T(4), (60)

where T'(4) is a local group of 4D translations;

b) by transformation of the six anholonomic rota-
tional coordinates xa» = —Xpa, describing rotation
of 4D oriented point (or an arbitrary accelerated 4D
frame)

ea,; = Aa(;ea a=0,1, 2, 3,

79

A% € O(1.3), (61)

where O(1.3) is a local Lorenz group of 4D rotations.
Term "local group” means, that the parameters of
the group depends on the point of the curve.

The matrix A% can be represented as

N =,
where
1 0 0 0
R _ 0 coS gy COSQzy COS Py, (62)
b 0 cOSpys COSQyy COSQy. |’
0 cosp.; cosp.y coSp..
is the matrix of the spatial rotations and
gl —Bay —By =By
_ﬂz,y 1+ (“/—12)53 (v=1)BxfBy (”Y—l)fwﬁz
b B 52 B
L= — By (vfl)éﬁxﬁy 1+ (=18 ('yfl)flyﬁz
v B B2 B )
75)2/7 (’Yflﬁ)zﬁzﬁz ('Y 1,8)2Byﬁz 1+ (Wfﬁlz)ﬁz

(63)

— is the matrix, which describes rotation in space-
time planes. Here

1
7_7W’

— is relativistic factor, in which 3D velocity v, =
dx,/dt of 4D frame connects whit (3, and space-time
angle 9, as

B =67+ By + 52

%o _ B, = thida, (64)
C

were c¢ - velocity of light.



VI. GENERALIZATION OF THE
EINSTEIN’S MECHANICS

Einstein’s General Relativity assumes the descrip-
tion of laws of physics in an arbitrary accelerated 4D
frames. As we have shown, an arbitrary accelerated
4D frame has 10 digress of freedom an describes by
10 equations of motions: four equations of motions of
the origin of 4D frame (50) and six rotational equa-
tions of motion (55). Einstein used only four equa-
tions
da? dx*

2t -
ee _ p 65
ds? Ik ds ds (65)

A. Generalization of the equations of motion of
accelerated 4D frame

The equations of motion of the origin of 4D ori-
ented point (or an arbitrary accelerated 4D frame
)coincide with the equations of the geodesics of the
space of absolute parallelism
dx? dx* da? dx¥

o ——— 4T, ———— =0 66
Ik ds ds+ Tk ds ds ’ (66)

d?z’
ds?
which differ from the equations of motion in Ein-

stein’s theory of gravitation (65) by the additional
term

. dad do®
*ds ds
The name of the quantities
Tijk = eiavke“j

—the Ricci rotation coefficients suggests that they de-
scribe rotation. It follows from our analysis, that the
quantities Tij i describe the change in the orientation
of the tetrad vectors e, when the origin of tetrad
shifts by an infinitesimal distance dx’. Einstein in-
terpreted symbols T, in his equations (65) as in-
tensity of a gravitational field. The object I' i get
transformed relative to the transformations in 7T'(4)
group as nontensor, whit respect formula (43). So,
using normal coordinates, we can make I'? jk €qual to
zero. The Ricci rotational coefficients under transfor-
mation of translation coordinates in 7T'(4) transform
as tensor

7 7 /
ox' OxI oz
Ozt i’ Ok "I

Writing down the equations (66) in normal coordi-
nates, we have

k'

A2z’
ds?

; drd da®

s as =0 (68)

Using the Ricci rotation coeflicients we can form thd
4D angular velocity of the tetrad vector

; ; dat

with the symmetry properties
Qij = —jS. (70)

Suppose now that the tetrad vectors coincide with
the vectors of a 4D arbitrarily accelerated reference
frame, then, by (69), the rotation of the reference
frame is fully determined by the torsion field 7%
Since the field Tij i transforms following a tensor law
relative to the coordinates transformations x;, the ro-
tation of reference frames relative to the coordinate
transformations is absolute. The nontensor transfor-
mation law of Tij i is valid for transformations in the
angular coordinates 1, @2, @3, ¥, Jo, V3, there-
fore rotation is only relative for the group of rota-
tions O(1.3)°. Let us now write the nonrelativistic
equations of motion of a mass m under inertia forces
alone, assuming that at a given moment of time it
passes through the origin of an accelerated system

d

a(mv) =m(—W + 2[vw]), (71)

where —mW-— force of inertia, arising at forward ac-

celeration and 2m[vw] — Coriolis force of inertia.
These equations can be written in the form

d da?
e (mva) = m(~Wao + 2wap o), @0 =1,2,3,

dt

(72
where W = (W, Wy, W3) = (Wi, Wao, Wsp),w =
(LU]_,LUQ,UJ?,),

0 —W3 W2
wsg 0 —wi . (73)
—W2 W1 0

wag = —uJ@a = —

On the other hand, equations (68), if we take into
account (69), can be represented as

d*a’ ; dad

2z Ty =0 (74)

Multiplying these equations by mass m, we will
write the nonrelativistic three-dimensional part of
these equations in the form

dug, dz® dzP

Y = Qg — — -
o0 dSO op dSO

m dsy (75)



Since in a nonrelativistic approximation dsgy = cdt, uq

= “xanddxg = cdt, then the equations (75) become’

dv 1dz”?
md—ta = —mc*Quo — 2chQa5;H. (76)
Comparing (76) with (72) gives
|1% W. W. w w w
Q10:721, 920:727930273, Qp=——,Qy= 2, Qoz=——.
c c c c c c

Consequently, the matrix of the 4D angular velocity of rotation of an arbitrarily accelerated reference frame

(matrix of the 4D ”classical spin”) has the form

O W1 =Wy, —Wsy

0, = i W1 0 —CWwW3 CWo

K 02 W2 CWwsg 0 —CW1
W3 —cws cwy 0

were wy, = dg /dt,

a = 1,2,3 — spatial angular velocity and ©, = dd, /dt,

O —0; —0; -0,

91 0 —Wws3 w2

c @2 w3 0 —Ww1 ’
@3 —Wwo w1 0

| =

(77)

a = 1,2, 3- angular velocity

in the space-time planes. So, in nonrelativistic approximation 3D acceleration of 4D frame origin

dd,

Wo = O, = CW, a=1,2,3
looks like rotation in the space-time planes. It is seen from the matrix that the 4D rotation of a frame caused

by the inertial fields Tij i is associated with the torsion

1

Ay =Tl = =i’ = —€ e = *iei o(€%; —€%55) (78)
of a space of absolute parallelism, since
T'jk = =i+ 9 (9jsQnk + 9rsQiy)- (79)

Fields determined by the rotation of space came to be known as torsion fields. Accordingly, the torsion field

1" represents the inertial field engendered by the torsion of a space of absolute parallelism™*.

B. Generalization of the Einstein’ vacuum
equations

An empty, but curved space in Einstein’s theory
obeys the equations

Ry =0, (80)

whose Schwarzschild’s solution is supported by ex-
periment (the shift of Mercury’s perihelion, the de-
viation of a light ray in the Solar gravitational field,
the delay of radiosignals in a gravitational field, etc.).

Note that Einstein’s vacuum equations do not con-
tain any physical constants. They are purely field
nonlinear equations, and Einstein held that a cor-
rect generalization of these equations would lead us
to equations of the unified field theory. He wroteS:
”1 believe, further, that the equations of gravitation
for empty space are the only rationally justified case
of field theory that can claim to be rigorous (con-
sidering nonlinear terms as well). This all leads to

11

(

an attempt to generalize the gravitation theory for
empty space.”

Einstein believed that one of the main problems in
unified field theory is the one of the geometrization of
the energy-momentum tensor of matter on the right-
hand side of his equations (1). This problem can be
solved using the concept of 4D oriented point and
the space of events with the geometry of absolute
parallelism and Cartan’s structural equations in this
geometry®:

Displacement of the origin and changing of the ori-
entation of 4D oriented point can be presented by
differentials

de' = e%e’ (81)

a’

deib = Aabeia, (82)
where

e” = elda’, (83)



Aab = eaideib = Aabkdl'k (84)
are differential 1-forms of tetrad e? and connection
of absolute parallelism A%, . Differentiating the rela-
tionships (81), (82) externally, we have, respectively,

d(dz’) = (de® — e A A% )e’, = —S%¢

(85)

a’

d(de’,) = (dA®, — A, NAP el = —S% ef,. (86)

Here S* denotes the 2-form of Cartanian torsion,
and S® — the 2-form of the curvature tensor. The
sign A signifies external product, e.g,

e Neb = e%eb — elel. (87)

By definition, a space has a geometry of absolute
parallelism, if the 2-form of Cartanian torsion S* and

the 2-form of the Riemann-Christoffel curvature S,
of this space vanish

(88)

(89)

At the same time, these equalities are the integra-
tion conditions for the differentials (88) and (89).
Equations

de® — e NAY, = -5, (90)

dA®, — A° NAP, = —S° | (91)

which follow from (85) and (86), are Cartan’s struc-
tural equations for an appropriate geometry. For the
geometry of absolute parallelism hold the conditions
(88) and (89), therefore Cartan’s structural equations
for A4 geometry have the form

de® — e NA®, =0, (92)

dA®, — A°, ANAY, = 0. (93)

|

2 % 7 s
Tjm = —;{(V[iT + 16T 1m))

|5]m]

Let us now decompose the Riemann tensor R;jim

1 n i i S
59im 9" (VT ) + T Tppny)

Considering (51), we will represent 1-form A% as thel
sum
AY =T%+T49. (94)

Substituting this relationship into (92) and noting
that

e“NAY =eNTS,

we get the first of Cartan’s structural equations for
space of events of the 4D oriented points

de® — e NT% = 0.
In matrix form these equations will look like

Ve = €T ) = 0. (4)

Substituting (94) into (93) gives the second of Car-
tan’s equations for the space.

Ry +dTy —TSNT% =0,
or, in matrix form

R + 2V (5T ) + 2T T ) = O- (B)

el

In the coordinate indexes the equations (B), written
as

R jpm + 2V Ty + 25Ty = 0. (95)
Forming, using (95), the Einstein tensor
1
Gjm = ij - §gij7
we obtain the 10 equations
1
ij - igij = Vij7 (96)

which are similar to Einstein’s equations, but with
the geometrized right-hand side defined as

; (97)

(

into irreducible parts

1
Rijkm = Cijkm + gie Bm)j + G RBm)i + gRgi[mgk]ja
(98)



where Cim, is the Weyl tensor; the second and third
terms are the traceless part of the Ricci tensor Rjy,
and R is its trace.

Using the equations (96), written as

1
Rjm =v (TJ - 29jmT> , (99)
we will rewrite the relationship (98) as

1
Rijk:m = Oz’jkm + 2Vg[k(iTj)m] - gVTgi[mgk]ja (100)

where T is the tensor trace (97).
Now we introduce the tensor current

1
Jijkm = 29[k(iTj)m] - ngi[mgk]j (101)
and represent the tensor (100) as the sum
Rijm = Cijrm + VJijem- (102)

Substituting this relationship into the equations
(95), we will arrive at

Cijkm + 2V 1T 1m) + 2T5s(1 T ) = —VJijlom- (103)

Equations (103) are the Yang-Mills equations with
a geometrized source, which is defined by the rela-
tionship (101). In equations (103) for the Yang-Mills
field we have the Weyl tensor Cjjkm, and the poten-
tials of the Yang-Mills field are the Ricci rotation co-
efficients T;k. Summarizing the geometrized Einstein
equations (96) and the Yang-Mills equations (103),
we can represent the structural Cartan equations (A)
and (B) as an extended set of Einstein-Yang-Mills
equations

V[keg] + T[ikj]eai = 07 (A)
1
ij - ig]mR = Vj}ma (Bl)

+ 2V T ) + 2w Ty = ¥

Jjkm>

in which the geometrized sources T}, and J;jrm are
given by (97) and (101).

For the case of Einstein’s vacuum the equations
are much simpler

Vike§) + Tijet = 0, (9)
ij = 0; (ZZ)
Cikm + 2V T ) + 2T, T m) = 0. (444)

Thus, the structural equations of absolute pa]Il
allelism geometry, represent an extended set of
Einstein-Yang-Mills equations with the gauge trans-
lations group Ty defined on the base z* with the
structural equations (A), and with the gauge rota-
tional group O(1.3), defined in the fibre e?, with the
structural equations in the form of the geometrized
Einstein-Yang-Mills equations (B.1) and (B.2).

It is easy to see, that when torsion Q]'-ki (and ,
hence, torsion field T%;;) in the (A) and (B) equa-
tions is equal to zero the space of events becomes
Minkovski space. The converse proposition, gener-
ally, is incorrect. If to put in the equations (A) and
(B) Riemannian curvature equal to zero, we shall re-
ceive the equations

v[leljlm] + TZ[kT|§|m] =0, (105)

which describe so-called primary torsion fields®.

VII. CORRESPONDENCE WITH THE
EQUATIONS OF EINSTEIN’S THEORY

The equations (66) will be transformed to the
equations of motions of Einstein’s theory of gravi-
tation when the inertia force in (66) becomes zero

; . dad da¥
or, using (79) (for m # 0)
Z—da:j dxF i s B dxd dzF
i s T (9gsmr; + ks )gg =0.
(107)

Since Qpi; is skew-symmetric in indices m and &,
then it follows from (107) that in inertial refer-
ence frames the torsion (),,;; of the space is skew-
symmetrical in all the three indices
Tijk = —Tjik = —Tirg = —Qijr, (108)
but not equal to zero and coincides with torsion field
T*;,. The energy-momentum tensor (97) in these
case is symmetrical in the indices 7 and m to yield
1 TS 1 NiTe XK

Ty = ;(Qstji - §9ijs jS ) (109)
In general case torsion Q:;* has 24 independent com-
ponents and it can be represented as the sum of three
irreducible parts as follows
(110)

1 A _ .
7&-” Qs+Qz]k,

) 2 .
Q= 552 [ij] + 3% gks

-J



where

Q.ijk: = gimgksﬂ;n.jS? (111)
and Q; — the vector, Qj — the pseudovector and ij
—the traceless part of torsion are given by

Q; = Qi (112)
A 1 mns
= 580, (113)
Q.Sjs =0, Qijs + sti + Qsij =0, (114)

where €;j1m is a fully skew-symmetrical Levi-Civita
symbol.

Since in inertial reference frames the torsion 2;;s
is skew-symmetrical in all the three indices, among
the irreducible parts of torsion in inertial frames only
the pseudovector (113) is nonzero.

We can define the auxiliary pseudovector h,,
through the field (113) as follows

Qijk = Eijkmhm, Qijk = €ijkmhm (115)
and write the tensor (109) as
1 1,
ij = Z(hjhm — §gjmh hz) (116)

If the pseudovector h,, is light-like, it can be rep-
resented as

B = ®lyy, Lpl™ =0, & =d(z"). (117)
In this case the matter tensor (116) becomes
1 ,
Tjm = — 0 (2")ljlm, (118)
1%
and the density of matter is given by
L oo i

If the pseudovector h,, is time-like, it can conve-
niently be represented as

B = 0(2") (120)

where
(121)

upu™ =1

and (z?) is a scalar quantity.
Substitution of (120) into the tensor (116) yields
the energy-momentum tensor of the form

1
(122)

1 1
Tijm = ;‘02(“3'““1 - §9jm) = —pc?(ujtim

12

were

1 .
p= - (a') (123)
density of the matter. Tensor (118) looks like an
energy-momentum tensor of isotropic radiation, and
the tensor (122) in its structure looks rather like the
energy-momentum tensor of an ideal liquid. Thus, in
a post-Einstein’s approximation the matter density
is defined through squares of torsion fields ® and ¢
according to (119) and (123).

A. Motion of the torsion matter

The left-hand side of Einstein like equations (B.1)
is always symmetrical in indices j and m, therefore
these equations can be written as

1
Rjm — 2gimB = VI{jm),

5 (124)

Aj = Tiji? (126)
The equality (??) should be considered as a con-
straint which apply on the torsion €2 ¥ ' At transition
to the Einstein theory the condition(108) is satisfied,
thus (?7?) vanish and from (??) we find

Vil =0, (127)

Substituting (115) into (127) gives
hin.j = hjm = 0.

These equations have two solutions: h,, = 0 (a trivial
one), and

hm = \I’,mv

where W is pseudoscalar.  Writing the energy-
momentum tensor (127) through this pseudoscalar,
we have

1

1 %
5(\114'\:[!,771 — §gjm\:[l7 \Il,z)

T = (128)
In quantum field theory the tensor (131) is the
energy-momentum tensor of a massless pseudoscalar
field, where the pseudoscalar W plays the role of the
wave function in quantum equations of motion.
According to the field equations (124), torsion ;!
"tells” geometry how to ”curve”; furthermore, from



the field equations (124) itself, geometry ”tells” mat-
ter how to move. Using second Bianchi’s identities
for Riemann tensor, we can fined

Vi (R™ — §jom) = 0.
Applying this equality to the equations (124),

|

we shall receive conservation law of the energ]y?—'
momentum tensor from which the equations of mo-
tion follows

. 1 .
VJ (RJ - *gij> = ijij = O7

5 (129)

from which the equations of motion follows.

The right-hand side of (129) yields for tensor (122) the equations of motion of the matter in the form

. ; 1 ) . o1 , 1 .
0= ViT},, = —V;(pctuiu™) + ivj(p&gﬂ”) = —pW Vu™ — u"V,pu? + ipCQngjm + §gjm02vjp.

The first term in the right part of this equality is
equal to zero

. du™
—p IV ju™ = —ch(% + T wFu™) =0, (131)

as this expression describes geodesic motion in the
Einstein’s theory The third term also equal to zero,
because
ngjm =0.
For an incompressible fluid we have
Vip=0,
therefore from (122) we shall receive the equation of

|

(130)

continuity

Vi(pu?) = 0;(pu?) + puT?,; = 0. (132)
In normal (local) coordinates I’ r; = 0 and the equa-
tion (132) becomes

op + div(pv) = 0.

o (133)

If to substitute here, for example, the density (123)
we shall receive for function ¢ the nonlinear equation

2

88% + div(p?v) = 0.

B. Definition of v factor in the field equations

We will consider the spherically symmetrical solution of the vacuum equations (A) and (B), which describe
the vacuum excitation with a variable Newton potential and for which the Energy-momentum tensor (97) is
different from zero. This solution has the following characteristics®:

1. Coordinates 2° = u,z! = r, 22 = 0,23 = ¢.

2. Components of the Newman-Penrose symbols

ol =(0,1,0,0),

ot = (1,U,0,0), oh; = p(0,0, P,iP),

0
o =(1,0,0,0), o} =(-U1,0,0), o= _2713(0’0’ 1,4)

Uu) = —-1/2+¥u)/r, P=

(2)"12(1+¢C/4),

2, .3
(=z"+1ix°,

U0 = WO(u).

3. Spinor components of the torsion field

p= _1/T7

a=—F=-ar,

v =90(u)/2r?,



pw=—1/2r +¥°(u)/r?,

4. Spinor components of the Riemann tensor

Uy =0 = —09u)/r3, B

=0 =—0u)/r?=—

OéOZC/4. 14

AR 1
Ou r?’

The Riemann metric of the solution (??) in (quasi) spherical coordinates has the form

20 200 () !
ds? = (1 — r(t)> Adt? — (1 — (t)> dr? — r2(d92 + sin? 9d<p2).

Using the solution (??), we can determine the explicit
form of the energy-momentum tensor (97). Calcula-
tions will show that the tensor is

Tim = pc*lilm, (135)

where p is the matter density of a vacuum excitation
given by
200 (u)
vc2r2’

= WO(u) <0 (136)
and l,,, is the light like vector [,,,I" = 0.

We now consider the limiting process ¥°(u) —
U° = const of the matter density in the solution
(?7). We introduce the auxiliary parameter £ with
the dimensionality of length

77\\1/°|r2

£= 300

(137)

Through the parameter £ the density module (136)
can be represented as p = pT

s 1 o¢ _smwe 1 ¢ (&
v 22?2 we? 22 (r2 4 £2) r2 )’

J

- (134)

(

(138)

where the + sign implies that the density p™ defines
right-hand matter with a positive density and posi-
tive mass. Taking the limit in (138) for £ — 0, i.e.,
for U°(u) — ¥° = const, and using the well-known
formula

27TT2 T wl—>InO <;1;2 + 7»2) 27TT2 (T) (I‘),

where §(r) is the three-dimensional Dirac function,
we will get

8rwe 1
+ §
ve? 2mr? (r) ve

Srwe
= 2

d(r) = Mé(r), (139)

where M = const - mass of a point source.

On the other hand, as the source goes stationary, the metric (134) becomes the Schwarzshield metric

2MG

2MG

ds® = (1 — —5)c%dt* — (1 )" hdr? = r?(d6* + sin® 0dg?). (140)
re re
(
(i.e., the solution of Einstein’s equations for a point  vacuum equations (B.1)
source) provided that
8rG

U0 = == — const.

> (141)

Substituting (141) into the equality (139), we will
obtain the value of initially arbitrary factor v in the

In that case the equations (B.1) coincide with Ein-
stein’s equations that describe the gravitational field
of a point source with constant mass M. It is seen
from this relationship that when a vacuum excitation
becomes stationary the matter density distributed



over space coincides with the matter density for a
point particle (Dirac’s d-function describes the dis-
tribution of a point source). The fact that a material
point appears in a purely field theory as a limiting
stationary case is one of the most important results
of the new theory.

VIII. CONCLUSION

More than 300 years we have been applying New-
ton’s mechanics to explain non-relativistic mechani-
cal experiments. Although Newton’s mechanics has
been generalized three times: by the special relativity
theory, general relativity theory, and quantum me-
chanics, there remains a possibility for its further
generalization. The fourth generalization of New-
tonian mechanics has become possible with regards
that new mechanics has been based upon the follow-
ing: 1) Clifford-Einstein program for geometrization
of all physics equations, including classical mechan-

ics, (Unified Field Theory?); 2) Cartan’s idea aboli?
the connection of the torsion of space with physical
rotation”.

Einstein assumed the solution of these problems
in the geometrization of the right hand of its equa-
tions. Generalizing Einstein’s vacuum equations, we
have introduce structural Cartan equations geometry
of absolute parallelism as the new vacuum equations.
It has allowed us not only to find a general view of
geometrized energy-momentum tensor, but also to
specify connection torsion of the space of absolute
parallelism with a field of inertia. The mass of any
object in the generalized theory has purely field na-
ture and is defined as a measure of field of inertia.
The rest mass of such object can be operated, using
rotation of masses of which the object consists. The
first experimental acknowledgement of these theoret-
ical conclusions are already received by us at research
of the dynamics so called 4D gyroscope®.
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