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The mechanics of an orientable point (point with ”spin”) based on 3D and 4D Frenet equations is
considered. In such mechanics there is an opportunity to describe formally any physical trajectory of
a particle with own rotation. We use anholonomic rotational coordinates (Euler angles) as elements
of internal space of the mechanics which generate a rotational relativity. The groups of transfor-
mations of the mechanics of an orientable point form Poincare’s group with semidirect product of
translations and rotations, so translational and rotational momentums appear dependent from each
other. Connection of the curve torsion with Ricci rotational coefficients is shown and rotational
metric is entered. Equivalence between equations of motion 4D oriented point and geodesic equa-
tions of absolute parallelism geometry is established. The space of events an arbitrary accelerated
4D frame of reference, which has 10 degrees of freedom, is described by Cartan structure equations
of absolute parallelism geometry A4(6). It represent 10D coordinate space in which 4 translational
coordinates x0 = ct, x1 = x, x2 = y, x3 = z describe motion of the origin O 4D orientable point
and 6 angular coordinates ϕ1 = ϕ, ϕ2 = ψ, ϕ3 = θ, ϕ4 = ϑx, ϕ5 = ϑy, ϕ6 = ϑz describe change
of its orientation.

The structural equations of absolute parallelism geometry A4(6), represent an extended set of
Einstein-Yang-Mills equations with the gauge translations group T4 defined on the base xi and with
the gauge rotational group O(1.3), defined in the fibre ei

a. The sources in these equations are defined
through the torsion (torsion field) of A4(6) geometry. The received system of the equations represents
generalization vacuum Einstein’s equations on a case when sources have geometrical nature. On
the basis of the Vaidya-like solution of the Einstein-Yang-Mills equations correspondence with the
Einstein’s equations is established.

PACS numbers:

I. INTRODUCTION

Einstein proposed the following approach to the
construction of the fundamental theory of things in
the microworld. On the left-hand side of his famous
equations

Rjm − 1
2
gjmR =

8πG

c4
Tjm (1)

one finds a purely geometrical quantity (the Einstein
tensor Gjm = Rjm − 1

2gjmR), and on the right-hand
side, the energy-momentum tensor Tjm for mater,
which was, so to speak, introduced ”manually.” In
Einstein’s picture, mater appears thus against the
background of a curved space-time as an entity inde-
pendent of space-time.

Einstein was not satisfied with the phenomenolog-
ical representation of Tjm, since: ”The right-hand
side includes all that cannot be described so far in
the unified field theory. Of course, not for a fleeting
moment I have had any doubt that such a formula-
tion is just a temporary answer, undertaken to give
to general relativity some closed expression. This
formulation has been in essence nothing more that
the theory of the gravitation field, which has been
separated in a somewhat artificial manner from the
unified field of a yet unknown nature1.”

A way to remove arbitrariness in the selection of
the energy-momentum tensor was seen by Einstein in
the geometrization of the energy-momentum tensor
of matter on the right-hand side of Einstein’s equa-
tions (1). Einstein believed that the geometrization
of the energy-momentum tensor of matter should re-
sult in the geometrization of the matter field that
make it up. For Einstein the geometrization of mat-
ter fields implied the construction of a fundamen-
tal theory of phenomena in the microworld that is
in conformity with relativity principle. 30 years he
tried constructing a ”reasonable general relativistic
theory,” and within its framework a ”more advanced
quantum theory2.”

In the present work we offer to geometrize the right
part of the equations (1), using instead of a mate-
rial point of general relativistic Einstein’s mechan-
ics more the general object - an orientable material
point. We shall understand any accelerated refer-
ence frame, formed by unit orthogonal vectors as an
orientable material point. In 3D translational coor-
dinates space the orientable point has 6 degrees of
freedom, in 4D translational coordinate space - ten.
Generalization of the Einstein’s theory offered by us
allows analytically to describe Descartes’s approved
idea, that any real motion is a rotation.



2II. 3D ORIENTED POINT AND
GENERALIZATION OF THE EQUATIONS OF

NEWTON’S MECHANIC

In 1847 French mathematician Jean F. Frenet in
his thesis has written equations, describing motion
of oriented point in the 3D space along an arbi-
trary curve x = x(s), where s – the arc length.
Equations are written for the three orthogonal unit
vectors t, n and b with orthogonality conditions
t2 = n2 = b2 = 1, tn = nb = bt = 0. The tan-
gent unit vector t is choused as tangent to the curve
at point M (fig.1), pointing the direction of motion.
The normal unit vector n is the derivative of t with
respect to the arc length parameter of the curve, di-
vided by its length and the binormal unit vector b
is defined as the cross product b = t× n. For these
vectors Frenet’s equations look like3

dx
ds

= t . (2)

dt
ds

= κ(s)n , (3)

dn
ds

= −κ(s)t + χ(s)b , (4)

db
ds

= −χ(s)n , (5)

where κ(s) - curvature of the curve and χ(s) - torsion
of the curve. Frenet was the first who has shown that
arbitrary curve in 3D flat space is determined by two
scalar parameters - curvature κ(s) and torsion χ(s).

FIG. 1: Trajectory of the 3D oriented point

Differentiating equations (2) on s and using (3)-
(5) and orthogonality conditions, we shall get the
equations

d2x
ds2

= κ(s)n , (6)

d3x
ds3

=
dκ(s)

ds
n− κ2(s)t + κ(s)χ(s)b , (7)

describing motion of the triad origan O (motion of
point M).

For comparison of the equations (6) (7) with the
equations of Newton’s mechanics, it is convenient to
pass in them to time parameter t

d2x
dt2

= at + κv2n , (8)

d3x
dt3

= (
da

dt
−κ2v3)t+(3avκ+v2 dκ

dt
)n+κχv3b , (9)

where v = ds/dt – absolute velocity and a = dv/dt-
– tangent acceleration. Multiplying these equations
on mass m, we shall receive the translational equa-
tions of motion of an orientable point with the law
of transformation infinitesimal vector dxα

dxα′ =
∂xα′

∂xα
dxα, α = 1, 2, 3,

where matrixes ∂xα′/∂xα form the group 3D trans-
lations T (3). The equations (8) are similar to the
equations of Newton mechanics, but have geometri-
cal nature. A choice of curvature κ and parameter s
it is possible to describe formally any physical trajec-
tory of a particle in 3D space, moving under action
of force F = m(at + κv2n). The equations (9) have
no analogues in the Newton mechanic as contain the
third derivative of coordinate on time. In electrody-
namics we known equations of motion of radiating
charge

mẍ = eE +
e

c
[ẋH] +

2e2

3c3

...
x , (10)

which contain the third derivative of coordinate on
time. Using (9) we have for reaction force of the
radiation we have

Frad =
2e2

3c3
{(da

dt
−κ2v3)t+(3avκ+v2 dκ

dt
)n+κχv3b}.

(11)
From these equations one can see that the reaction
force of the radiation in electrodynamics has com-
plex structure. It contains terms generated not only
by external electromagnetic fields, but also by tor-
sion χ(t), created by spin of an electron. The last
term in right hand side of equation (11) contain
torsion χ, therefore accelerated particle possessing a



3spin, radiates at the same time electromagnetic and
electro-torsion fields (fields of Ricci torsion). This
theoretical conclusion is excellently confirmed by nu-
merous experimental facts9. It is necessary to note
that until now special experiments on research of
structure of the reaction force of the radiation were
not carried out. Only the surprising N.Tesla de-
vices are known permitting to transmit electromag-
netic energy by a way, not explained by conventional
electrodynamics10. The system of the equations (8)
(9) describes the motion of the origin of an orientable
material point taking into account of its spin (torsion
χ) and, certainly, generalizes the equations of New-
ton’s mechanics.

III. INTERNAL SPACE OF THE
ANHOLONOMIC ROTATIONAL

COORDINATES AND ROTATIONAL
RELATIVITY

During infinitesimal displacement of point M along
the curve the triad of Frenet’s vectors simultaneously

change their orientation in space. For description of
the change it is convenient to introduce anholonomic
angular coordinates

ϕ = ∠(e1 eξ), ψ = ∠(eξ e1′), θ∠(e3 e3′),

(0 ≤ ϕ ≤ 2π, 0 ≤ ψ ≤ 2π, 0 ≤ θ ≤ π, )

– Euler angles (see (fig.1a)). Let’s assume, that with
a point M of a curve the triad with motionless unit
vectors e1, e2, e3 is connected. Let’s designate com-
ponents of motionless Frenet triad as

t = e
′
1, n = e

′
2, b = e

′
3.

At displacement of the origin O of Frenet triad along a curve from a point M in a point M ′, there is a
rotation vectors of Frenet triad (fig. 2a). Projecting the axes of a mobile triad t, n, b, located in a point M ′

on the motionless triad connected with a point M , we find

t = e
′
1 = e1(cos ϕ cosψ − sin ϕ sin ψ cos θ) + e2(sinϕ cosψ + cosϕ sin ψ cos θ) + e3 sin ψ sin θ,

n = e
′
2 = −e1(cos ϕ sin ψ + sin ϕ cos ψ cos θ)− e2(sinϕ sin ψ − cosϕ cosψ cos θ) + e3 cosψ sin θ,

b = e
′
3 = e1 sin ϕ sin θ − e2 cos ϕ sin θ + e3 cos θ.

Expressing the components of tangent vector t =
e′1 = dx/ds through angular variables, we have

dx

ds
= cos ϕ cosψ − sin ϕ sin ψ cos θ, (12)

dy

ds
= sin ϕ cosψ + cos ϕ sin ψ cos θ, (13)

dz

ds
= sin ψ sin θ. (14)

Differentiating the third components of vectors t and
n and second component of the vector b, we get ”ro-
tational equations of motion” as follows

dϕ

ds
= χ

sin ψ

sin θ
, (15)

dψ

ds
= κ− χ sin ψ ctgθ, (16)

dφ

ds
= χ cosψ. (17)

According to the equations (15)-(17) curvature κ and
torsion χ cause rotation of Frenet triad, therefore
more correctly to name their first χ1 = κ and sec-
ond χ2 = χ torsion of a curve. The system of the
equations (12)-(17) represents system Cauchy for six
unknown functions x, y, z, ϕ, ψ, θ nd supposes one
and only one solution in the form of regular functions

x = x(s), y = y(s), z = z(s), ϕ = ϕ(s)

, ψ = ψ(s), θ = θ(s)
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FIG. 2: Changing of the orientation of an oriented point
at displacement of point M on dM; b) according to Eu-
ler’s theorem an infinitesimal rotations around the three
axes it is possible to replace by one rotation with the an
infinitesimal angle.

satisfying to the equations (12)-(17) and entry con-
ditions

x = x0, y = y0, z = z0, ϕ = ϕ0, ψ = ψ0, θ = θ0

for s = s0. Entry conditions have simple geometrical
sense. Initial coordinates x = x0, y = y0, z = z0

define position of an original point M0 a curve , and
Euler’s angles ϕ = ϕ0, ψ = ψ0, θ = θ0 - initial ori-
entation of the attached triad. Three Euler’s angles
form in each point M of a curve internal space an-
holonomic rotational coordinates, which, as it follows
from the equations (12)-(17), define the physical dy-
namics of an orientable material point. Passing to
the time parameter t in the equations (12)-(14), we
will get

vx(ϕ,ψ, θ) =
dx

dt
= v(cos ϕ cosψ− sin ϕ sin ψ cos θ),

(18)

vy(ϕ,ψ, θ) =
dy

dt
= v(sin ϕ cos ψ+cos ϕ sin ψ cos θ),

(19)

vz(ψ, θ) =
dz

dt
= v(sinψ sin θ), (20)

wherev = ds/dt – absolute velocity. Dependence of
the components of linear velocity from Euler’s an-
gels in these equations allows us to approve, that the
system of the equations (12)-(17) gives the analyt-
ical description of Descartes idea that any physical
motion is rotation. Let’s write down a Frenet triad
as

eA
α ,

Where holonomic index α accepts values 1, 2, 3, and
index A – local anholonomic index accepts values
1, 2, 3, designating numbers of a triad vectors. If on
the holonomic coordinate index α the triad eA

α has
the tensor law of transformation in group of transla-
tions T (3)

eA
α′ =

∂xα′

∂xα
eA

α, α = 1, 2, 3, ‖∂xα′

∂xα
‖ ∈ T (3), (21)

that on the anholonomic local index A triad eA
α it will

be transformed in group of local three-dimensional
rotations O(3)

eA′
α = ΛA′

AeA
α, A = 1, 2, 3, ΛA′

A ∈ O(3). (22)

We see, that use of the rotational coordinates as ele-
ments of space of events generates a rotational rela-
tivity in nonrelativistic mechanics. This is one more
fundamental distinction between Newton mechanics
and the mechanics of an orientable point. At the
description of motion of the Frenet triad the group
T (3) and O(3)T form Poincare’s group with semidi-
rect product of translations and rotations, as rotation
of vectors of a triad causes translation of its origin –
M points of M and vice versa. This fact substantially
distinguishes mechanics of an orientable point from
the Newtonian mechanics, as in the new mechanics
translational and rotational momentums appear de-
pendent from each other.

IV. CONNECTION OF χ1(s) AND χ(s)2
WITH RICCI ROTATIONAL COEFFICIENTS

AND ROTATIONAL METRIC

Statement 1. Torsion χ1 and χ2 are independent
components of Ricci rotation coefficients. Proof.
Let’s consider six-dimensional manifold of coordi-
nates x1, x2, x3, ϕ1, ϕ2, ϕ3. It is convenient to present
it as a vector bundle with the base formed by trans-
lational coordinates x1, x2, x3 (let it be Cartesian
coordinates) and fibre, specified at each point xα

(α = 1, 2, 3) by three orthonormalized Frenet’s ref-
erence vectors

eA, A = 1, 2, 3, (23)

where A means number of the reference vector. Ac-
cording to Euler’s theorem, an infinitesimal rota-
tions around the three axes of reference vector (23)
is equivalent to one rotation with angle dχχχ around a
definite axis passing through the origin of the axis O
(see (fig.2b) . It is possible to define the infinitesimal
rotation as

dχχχ = dχeχ,



5where vector eχ is directed along instantaneous ro-
tation axis of reference system. This direction is
selected so that, if one looks from the end of the
vector eχ e at a fixed point O, then the rotation
is made counter-clockwise (right-hand reference sys-
tem). Let’s note, that the vector χχχ does not exist,
as turn on a finite angle is not commutative. There-
fore for an infinitesimal rotation we have entered a
designation dχχχ instead of dχχχ. Unlike a polar vector
holonomic translational coordinates dx, infinitesimal
rotation

dχχχ = e3dϕ + eξdθ + e3′dψ (24)

is an axial vector. An infinitesimal rotation of
Frenet’s reference vectors eχ upon rotation dχχχ has
the form

deA = [dχχχeA]. (25)

If we divide (25) by ds, then we shall get

deA

ds
= [

dχχχ

ds
eA] = [ω, eA], (26)

where ω = dχχχ/ds - three-dimensional angular veloc-
ity of Frenet’s triad with respect to the instantaneous
axis. Writing down the orthogonality conditions for
Frenet’s reference vectors in the form

a) eA
αeα

B = δA
B =

{
1 A = B
0 A 6= B

, (27)

b) eA
αeβ

A = δ β
α =

{
1 α = β
0 α 6= β

,

A,B... = 1, 2, 3, α, δ, β = 1, 2, 3,

where α, δ, β... – holonomic coordinate indices, and
A,B... – anholonomic triad local indices; it is possible
to write down relations (25) and (26) as follows

deA
α = dχβ

αeA
β , (28)

deA
α

ds
=

dχβ
α

ds
eA

β . (29)

Multiplying (28) and (29) by eβ
A, we get

dχβ
α = T β

αγdxγ , (30)

deA
α

ds
= T β

αγ

dxγ

ds
eA

β , (31)

where we have defined the designation

Tα
βγ = eα

AeA
β,γ = −eA

β eα
A,γ

, Tαβγ = −Tβαγ , γ =
∂

∂xγ
. (32)

The quantities (31)were first introduced by G.Ricci4
and since then they have been called Ricci rotation
coefficients. Using the orthogonality conditions (27)
and the rule of transformation to local indices

TA
Bγ = eA

αTα
βγeβ

B ,

let’s rewrite equations (31) in local indices

deA
α

ds
= TA

Bγ
dxγ

ds
eB

α . (33)

Let’s chose vectors e(1)
α, e(2)

α and e(3)
α so, that

they coincide with Frenet’s vectors, and thus the
vector e(1)

α = dxα/ds = tα satisfies the condition
tαtα = 1. Then the equations (29) become the well-
known Frenet’s equations (3-5), in which

κ = χ1(s) = T (1)
(2)γ

dxγ

ds
,

χ = χ2(s) = T (2)
(3)γ

dxγ

ds
. (34)

While deducing (3-5) from (29), we used the following
relations

dxγ

ds
= eγ

(1), eγ
(1)e

(1)
γ = 1 . (35)

From the relations (31) it is clear, that in
Frenet’s equations curvature and torsion are ex-
pressed through components of Ricci rotation coef-
ficients (28), that proves the Statement 1.

The Ricci rotation coefficients are the part of the
connection of absolute parallelism geometry5 and
have an anti-symmetry on the two lower indices

Tα
[βγ] = −Ω..α

βγ ,

Ω..α
βγ = −1

2
eα
A(eA

β,γ − eA
γ,β), (36)

which it is possible to call Ricci torsion. Let’s note,
ones more, that the curvature κ and torsion χ of
Frenet’s curve would be more correctly called the
first and second torsion, as they are both expressed
through components of Ricci torsion (36).

From (35) we can find ds = eα
(1)dxα and

ds2 = eα
(1)dxαeα

(1)dxα = dxαdxα = dx2+dy2+dz2.

(37)



6This translational metrics is set on group T (3) of
translational coordinates and defines geometry of the
3D euclidian space, in which the curve is embedded.
Besides as follows from (24) and (33), on the group
of rotational coordinates O(3) the rotational metrics
is define.

χχχ2 = dϕ2 + dψ2 + dθ2 = dχα
βdχβ

α

= Tα
βγT β

αδdxγdxδ = dτ2, (38)

This metrics addresses in zero if the first and sec-
ond torsions (34) address to zero.

V. 4D ORIENTED POINT AND ABSOLUTE
PARALLELISM GEOMETRY

A 3D orientable material point is mathemati-
cal representation of an arbitrary accelerated three-
dimensional system of reference. Motion of such sys-
tem of reference is described by six equations as it has
six degrees of freedom. It would be possible to put
and solve the problem on what geometry possess the
space of events of an arbitrary accelerated 3D sys-
tems of reference. However, we consider as more im-
portant question — what geometry possess space of
events of an arbitrary accelerated 4D systems of ref-
erence or, that is the same, what the space of events
form the relative coordinates of the 4D orientable
material points? It is in advance possible to tell, and
it is obvious, that 4D an arbitrary accelerated system
of reference has 10 degrees of freedom, therefore, for
the description of its motion, it is necessary to use 10
coordinates. Leaning on experience, which we have
received at the description of the dynamics of an ar-
bitrary accelerated 3D system, we shall consider 10D
coordinate space in which 4 translational coordinates
x0 = ct, x1 = x, x2 = y, x3 = z describe motion of
the origin O 4D orientable point and 6 angular co-
ordinates ϕ1 = ϕ, ϕ2 = ψ, ϕ3 = θ, ϕ4 = ϑx, ϕ5 =
ϑy, ϕ6 = ϑz describe change of its orientation.

Consider a four-dimensional differentiable man-
ifold of 4D oriented points with translational coordi-
nates xi (i = 0, 1, 2, 3 a = 0, 1, 2, 3). Whit each
point of the manifold we connect four vectors ea

i

(i = 0, 1, 2, 3) and four covectors ej
b with the or-

thogonality conditions

ea
ie

j
a = δj

i , ea
ie

i
b = δa

b . (39)

Anholonomic tetrad ea
i defines the metric tensor of

the space

gik = ηabe
a
ie

b
k, ηab = ηab = diag(1 −1 −1 −1) (40)

and the translational Riemannian metric

ds2 = ηabe
a
ie

b
kdxidxk = gikdxidxk. (41)

Using the tensor (43), we can construct the Christof-
fel symbols

Γi
jk =

1
2
gim(gjm,k + gkm,j − gjk,m). (42)

that transform following a nontensor law of transfor-
mation

Γk′
j′i′ =

∂2xk

∂xi′∂xj′
∂xk′

∂xk
+

∂xi

∂xi′
∂xj

∂xj′
∂xk′

∂xk
Γk

ji (43)

with respect to the coordinate transformations

dxi′ =
∂xi′

∂xk
dxk, ‖∂xi′

∂xk
‖ ∈ T (4).

were T (4) – group of 4D translations. Now the Ricci
rotation coefficients (31) can be represented in the
form

T i
jk = ei

a∇kea
j , T

i
jk = −ea

j∇kei
a, Tijk = −Tjik,

(44)
where ∇k is a covariant derivative with respect to the
Christoffel Γi

jk symbols. The rotational metric in the
new space can be written as

dτ2 = dχa
bdχb

a = T a
bnT b

amdxkdxm , (45)

i, j , k... = 0, 1, 2, 3, a, b, , c... = 0, 1, 2, 3.

Let we have an arbitrary curve in four-dimensional
Riemannian space with translational coordinates
xi, (i = 0, 1, 2, 3). Then the curve is defined by three
scalar invariants χ1, χ2 χ3, and in our case the four-
dimensional Frenet’s equations have

De
(0)
k

ds
= χ1e

(1)
k , (46)

De
(1)
k

ds
= χ1e

(0)
k + χ2e

(2)
k , (47)

De
(2)
k

ds
= −χ2e

(1)
k + χ3e

(3)
k , (48)

De
(3)
k

ds
= −χ3e

(2)
k . (49)

Here vectors e
(0)
k , e

(1)
k , e

(2)
k and e

(3)
k form a tetrad,

and D is the absolute differential with respect to the
four-dimensional Christoffel symbols (43).

Statement 2. Any curve of Riemannian space can
be considered as the geodesics of space of absolute
parallelism5, with equations of the form

d2xi

ds2
= −Γi

jk

dxj

ds

dxk

ds
− T i

jk

dxj

ds

dxk

ds
. (50)



7Proof. Connection of absolute parallelism is de-
fined as3

∆i
jk = Γi

jk + T i
jk = ei

aea
j,k = −ea

je
i
a,k. (51)

These relations can be rewritten as follows

T i
jk = ei

a∇kea
j = −ea

j∇kei
a, (52)

where ∇k - covariant derivative with respect to
Christoffel symbols. Multiplying equality (52) on
ea

i (ej
a) and using the orthogonality conditions (39)

let’s present (52) as follows

a) ∇kea
j = T a

bkeb
j or b) ∇kei

a = −T i
jkej

a. (53)

Multiplying (41a) and (41b) on dxk/ds, we shall ob-
tain

Dea
j

ds
= T a

bkeb
j

dxk

ds
. (54)

Dei
a

ds
= −T i

jkej
a

dxk

ds
. (55)

Uncovering in equations (55) the absolute differen-
tial and supposing in them ei

(0) = dxi/ds, we shall
obtain geodesics equations (50).

Changing in equations (54) indices on which there
is a contraction, we find

Dea
k

ds2
= T a

bje
b
k

dxj

ds
.

Choosing in these equations the Frenet’s tetrad and
writing down them component by component, we
have

De
(0)
k

ds2
= T

(0)
(1)je

(1)
k

dxj

ds
, (56)

De
(1)
k

ds2
= T

(1)
(0)je

(0)
k

dxj

ds
+ T

(1)
(2)je

(2)
k

dxj

ds
, (57)

De
(2)
k

ds2
= T

(2)
(1)je

(1)
k

dxj

ds
+ T

(2)
(3)je

(3)
k

dxj

ds
, (58)

De
(3)
k

ds2
= T

(3)
(2)je

(2)
k

dxj

ds
. (59)

Comparing equations (65)-(68) with equations (77)-
(80), we shall obtain

χ1 = T
(0)
(1)j

dxj

ds
, χ2 = T

(1)
(2)j

dxj

ds
, χ3 = T

(2)
(3)j

dxj

ds
.

Since the quantities T i
kj are defined through Ricci

torsion (see (52)), then, as it follows from relations
obtained above, is possible to geometrize any curves
of Riemannian space, using Ricci torsion.

The common symmetries os space of events of 4D
oriented point are determined as:

a)by transformation of the four holonomic trans-
lation coordinates xi , describing the motion of the
origin of an arbitrary accelerated 4D frame

ea
i′ =

∂xi′

∂xi
ea

i, i = 0, 1, 2, 3, ‖∂xi′

∂xi
‖ ∈ T (4), (60)

where T (4) is a local group of 4D translations;
b) by transformation of the six anholonomic rota-

tional coordinates χχχab = −χχχba, describing rotation
of 4D oriented point (or an arbitrary accelerated 4D
frame)

ea′
i = Λa′

aea
i, a = 0, 1, 2, 3, Λa′

a ∈ O(1.3), (61)

where O(1.3) is a local Lorenz group of 4D rotations.
Term ”local group” means, that the parameters of
the group depends on the point of the curve.

The matrix Λa′
a can be represented as

Λa′
a = Ra′

bL
b
a

where

Ra′
b =




1 0 0 0
0 cos ϕxx cos ϕxy cos ϕxz

0 cos ϕyx cosϕyy cosϕyz

0 cos ϕzx cos ϕzy cosϕzz


 , (62)

is the matrix of the spatial rotations and

Lb
a =




γ −βxγ −βyγ −βzγ

−βxγ 1 + (γ−1)β2
x

β2
(γ−1)βxβy

β2
(γ−1)βxβz

β2

−βyγ
(γ−1)βxβy

β2 1 + (γ−1)β2
y

β2
(γ−1)βyβz

β2

−βzγ
(γ−1)βxβz

β2
(γ−1)βyβz

β2 1 + (γ−1)β2
z

β2




,

(63)

– is the matrix, which describes rotation in space-
time planes. Here

γ =
1√

1− β2
, β2 = β2

x + β2
y + β2

z

– is relativistic factor, in which 3D velocity vα =
dxα/dt of 4D frame connects whit βα and space-time
angle ϑα as

vα

c
= βα = thϑα, (64)

were c - velocity of light.



8VI. GENERALIZATION OF THE
EINSTEIN’S MECHANICS

Einstein’s General Relativity assumes the descrip-
tion of laws of physics in an arbitrary accelerated 4D
frames. As we have shown, an arbitrary accelerated
4D frame has 10 digress of freedom an describes by
10 equations of motions: four equations of motions of
the origin of 4D frame (50) and six rotational equa-
tions of motion (55). Einstein used only four equa-
tions

d2xi

ds2
= −Γi

jk

dxj

ds

dxk

ds
. (65)

A. Generalization of the equations of motion of
accelerated 4D frame

The equations of motion of the origin of 4D ori-
ented point (or an arbitrary accelerated 4D frame
)coincide with the equations of the geodesics of the
space of absolute parallelism

d2xi

ds2
+ Γi

jk

dxj

ds

dxk

ds
+ T i

jk

dxj

ds

dxk

ds
= 0, (66)

which differ from the equations of motion in Ein-
stein’s theory of gravitation (65) by the additional
term

T i
jk

dxj

ds

dxk

ds
.

The name of the quantities

T i
jk = ei

a∇kea
j

–the Ricci rotation coefficients suggests that they de-
scribe rotation. It follows from our analysis, that the
quantities T i

jk describe the change in the orientation
of the tetrad vectors ea

j when the origin of tetrad
shifts by an infinitesimal distance dxi. Einstein in-
terpreted symbols Γi

jk in his equations (65) as in-
tensity of a gravitational field. The object Γi

jk get
transformed relative to the transformations in T (4)
group as nontensor, whit respect formula (43). So,
using normal coordinates, we can make Γi

jk equal to
zero. The Ricci rotational coefficients under transfor-
mation of translation coordinates in T (4) transform
as tensor

T k′
j′i′ =

∂xi

∂xi′
∂xj

∂xj′
∂xk′

∂xk
T k

ji (67)

Writing down the equations (66) in normal coordi-
nates, we have

d2xi

ds2
+ T i

jk

dxj

ds

dxk

ds
= 0, (68)

Using the Ricci rotation coefficients we can form the
4D angular velocity of the tetrad vector

Ωi
j = T i

jk

dxk

ds
(69)

with the symmetry properties

Ωij = −Ωji. (70)

Suppose now that the tetrad vectors coincide with
the vectors of a 4D arbitrarily accelerated reference
frame, then, by (69), the rotation of the reference
frame is fully determined by the torsion field T i

jk.
Since the field T i

jk transforms following a tensor law
relative to the coordinates transformations xi, the ro-
tation of reference frames relative to the coordinate
transformations is absolute. The nontensor transfor-
mation law of T i

jk is valid for transformations in the
angular coordinates ϕ1, ϕ2, ϕ3, ϑ1, ϑ2, ϑ3, there-
fore rotation is only relative for the group of rota-
tions O(1.3)5. Let us now write the nonrelativistic
equations of motion of a mass m under inertia forces
alone, assuming that at a given moment of time it
passes through the origin of an accelerated system

d

dt
(mv) = m(−W + 2[vωωω]), (71)

where −mW– force of inertia, arising at forward ac-
celeration and 2m[vωωω] – Coriolis force of inertia.

These equations can be written in the form

d

dt
(mvα) = m(−Wαo + 2ωαβ

dxβ

dt
), α, β = 1, 2, 3,

(72)
where W = (W1, W2, W3) = (W10,W20,W30), ωωω =
(ω1, ω2, ω3),

ωαβ = −ωβα = −



0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 . (73)

On the other hand, equations (68), if we take into
account (69), can be represented as

d2xi

ds2
+ Ωi

j

dxj

ds
= 0. (74)

Multiplying these equations by mass m, we will
write the nonrelativistic three-dimensional part of
these equations in the form

m
duα

ds0
= −mΩα0

dx0

ds0
− 2mΩαβ

dxβ

ds0
. (75)



9Since in a nonrelativistic approximation ds0 = cdt, uα = vα

c anddx0 = cdt, then the equations (75) become

m
dvα

dt
= −mc2Ωα0 − 2mc2Ωαβ

1
c

dxβ

dt
. (76)

Comparing (76) with (72) gives

Ω10 =
W1

c2
, Ω20 =

W2

c2
, Ω30 =

W3

c2
, Ω12 = −ω3

c
,Ω13 =

ω2

c
, Ω23 = −ω1

c
.

Consequently, the matrix of the 4D angular velocity of rotation of an arbitrarily accelerated reference frame
(matrix of the 4D ”classical spin”) has the form

Ωij =
1
c2




O −W1 −W2 −W2

W1 0 −cω3 cω2

W2 cω3 0 −cω1

W3 −cω2 cω1 0


 =

1
c




O −Θ1 −Θ2 −Θ2

Θ1 0 −ω3 ω2

Θ2 ω3 0 −ω1

Θ3 −ω2 ω1 0


 , (77)

were ωα = dϕα/dt, α = 1, 2, 3 – spatial angular velocity and Θα = dϑα/dt, α = 1, 2, 3– angular velocity
in the space-time planes. So, in nonrelativistic approximation 3D acceleration of 4D frame origin

Wα = cΘα = c
dϑα

dt
, α = 1, 2, 3

looks like rotation in the space-time planes. It is seen from the matrix that the 4D rotation of a frame caused
by the inertial fields T i

jk is associated with the torsion

∆i
[jk] = T i

[jk] = −Ω . . i
jk = −ei

aea
[k,j] = −1

2
ei

a(ea
k,j − ea

j,k) (78)

of a space of absolute parallelism, since

T i
jk = −Ω..i

jk + gim(gjsΩ..s
mk + gksΩ..s

mj). (79)

Fields determined by the rotation of space came to be known as torsion fields. Accordingly, the torsion field
T i

jk represents the inertial field engendered by the torsion of a space of absolute parallelism11.

B. Generalization of the Einstein’ vacuum
equations

An empty, but curved space in Einstein’s theory
obeys the equations

Rik = 0, (80)

whose Schwarzschild’s solution is supported by ex-
periment (the shift of Mercury’s perihelion, the de-
viation of a light ray in the Solar gravitational field,
the delay of radiosignals in a gravitational field, etc.).

Note that Einstein’s vacuum equations do not con-
tain any physical constants. They are purely field
nonlinear equations, and Einstein held that a cor-
rect generalization of these equations would lead us
to equations of the unified field theory. He wrote6:
”I believe, further, that the equations of gravitation
for empty space are the only rationally justified case
of field theory that can claim to be rigorous (con-
sidering nonlinear terms as well). This all leads to

an attempt to generalize the gravitation theory for
empty space.”

Einstein believed that one of the main problems in
unified field theory is the one of the geometrization of
the energy-momentum tensor of matter on the right-
hand side of his equations (1). This problem can be
solved using the concept of 4D oriented point and
the space of events with the geometry of absolute
parallelism and Cartan’s structural equations in this
geometry5:

Displacement of the origin and changing of the ori-
entation of 4D oriented point can be presented by
differentials

dxi = eaei
a, (81)

dei
b = ∆a

be
i
a, (82)

where

ea = ea
i dxi, (83)



10∆a
b = ea

idei
b = ∆a

bkdxk (84)

are differential 1-forms of tetrad ea
i and connection

of absolute parallelism ∆a
bk. Differentiating the rela-

tionships (81), (82) externally, we have, respectively,

d(dxi) = (dea − ec ∧∆a
c)e

i
a = −Saei

a, (85)

d(dei
a) = (d∆b

a −∆c
a ∧∆b

c)e
i
b = −Sb

aei
b. (86)

Here Sa denotes the 2-form of Cartanian torsion,
and Sb

a – the 2-form of the curvature tensor. The
sign ∧ signifies external product, e.g,

ea ∧ eb = eaeb − ebea. (87)

By definition, a space has a geometry of absolute
parallelism, if the 2-form of Cartanian torsion Sa and
the 2-form of the Riemann-Christoffel curvature Sb

a

of this space vanish

Sa = 0, (88)

Sb
a = 0. (89)

At the same time, these equalities are the integra-
tion conditions for the differentials (88) and (89).

Equations

dea − ec ∧∆a
c = −Sa, (90)

d∆b
a −∆c

a ∧∆b
c = −Sb

a, (91)

which follow from (85) and (86), are Cartan’s struc-
tural equations for an appropriate geometry. For the
geometry of absolute parallelism hold the conditions
(88) and (89), therefore Cartan’s structural equations
for A4 geometry have the form

dea − ec ∧∆a
c = 0, (92)

d∆b
a −∆c

a ∧∆b
c = 0. (93)

Considering (51), we will represent 1-form ∆a
b as the

sum

∆a
b = Γa

b + T a
b. (94)

Substituting this relationship into (92) and noting
that

ec ∧∆a
c = ec ∧ T a

c,

we get the first of Cartan’s structural equations for
space of events of the 4D oriented points

dea − ec ∧ T a
c = 0.

In matrix form these equations will look like

∇[kea
m] − eb

[kT a
|b|m] = 0. (A)

Substituting (94) into (93) gives the second of Car-
tan’s equations for the space.

Ra
b + dT a

b − T c
b ∧ T a

c = 0,

or, in matrix form

Ra
bkm + 2∇[kT a

|b|m] + 2T a
c[kT c

|b|m] = 0. (B)

In the coordinate indexes the equations (B), written
as

Ri
jkm + 2∇[kT i

|j|m] + 2T i
s[kT s

|j|m] = 0. (95)

Forming, using (95), the Einstein tensor

Gjm = Rjm − 1
2
gjmR,

we obtain the 10 equations

Rjm − 1
2
gjmR = νTjm, (96)

which are similar to Einstein’s equations, but with
the geometrized right-hand side defined as

Tjm = −2
ν
{(∇[iT

i
|j|m] + T i

s[iT
s
|j|m])−

1
2
gjmgpn(∇[iT

i
|p|n] + T i

s[iT
s
|p|n]) (97)

Let us now decompose the Riemann tensor Rijkm into irreducible parts

Rijkm = Cijkm + gi[kRm]j + gj[kRm]i +
1
3
Rgi[mgk]j ,

(98)



11where Cijkm is the Weyl tensor; the second and third
terms are the traceless part of the Ricci tensor Rjm

and R is its trace.
Using the equations (96), written as

Rjm = ν

(
Tjm − 1

2
gjmT

)
, (99)

we will rewrite the relationship (98) as

Rijkm = Cijkm + 2νg[k(iTj)m] −
1
3
νTgi[mgk]j , (100)

where T is the tensor trace (97).
Now we introduce the tensor current

Jijkm = 2g[k(iTj)m] −
1
3
Tgi[mgk]j (101)

and represent the tensor (100) as the sum

Rijkm = Cijkm + νJijkm. (102)

Substituting this relationship into the equations
(95), we will arrive at

Cijkm +2∇[kT|ij|m] +2Tis[kT s
|j|m] = −νJijkm. (103)

Equations (103) are the Yang-Mills equations with
a geometrized source, which is defined by the rela-
tionship (101). In equations (103) for the Yang-Mills
field we have the Weyl tensor Cijkm, and the poten-
tials of the Yang-Mills field are the Ricci rotation co-
efficients T i

jk. Summarizing the geometrized Einstein
equations (96) and the Yang-Mills equations (103),
we can represent the structural Cartan equations (A)
and (B) as an extended set of Einstein-Yang-Mills
equations

∇[kea
j] + T i

[kj]e
a
i = 0, (A)

Rjm − 1
2
gjmR = νTjm, (B.1)

Ci
jkm + 2∇[kT i

|j|m] + 2T i
s[kT s

|j|m] = −νJ i
jkm, (B.2)

in which the geometrized sources Tjm and Jijkm are
given by (97) and (101).

For the case of Einstein’s vacuum the equations
are much simpler

∇[kea
j] + T i

[kj]e
a
i = 0, (i)

Rjm = 0, (ii)

Ci
jkm + 2∇[kT i

|j|m] + 2T i
s[kT s

|j|m] = 0. (iii)

Thus, the structural equations of absolute par-
allelism geometry, represent an extended set of
Einstein-Yang-Mills equations with the gauge trans-
lations group T4 defined on the base xi with the
structural equations (A), and with the gauge rota-
tional group O(1.3), defined in the fibre ei

a with the
structural equations in the form of the geometrized
Einstein-Yang-Mills equations (B.1) and (B.2).

It is easy to see, that when torsion Ω . . i
jk (and ,

hence, torsion field T i
jk) in the (A) and (B) equa-

tions is equal to zero the space of events becomes
Minkovski space. The converse proposition, gener-
ally, is incorrect. If to put in the equations (A) and
(B) Riemannian curvature equal to zero, we shall re-
ceive the equations

∇[kea
j] + T i

[kj]e
a
i = 0, (104)

∇[kT i
|j|m] + T i

s[kT s
|j|m] = 0, (105)

which describe so-called primary torsion fields5.

VII. CORRESPONDENCE WITH THE
EQUATIONS OF EINSTEIN’S THEORY

The equations (66) will be transformed to the
equations of motions of Einstein’s theory of gravi-
tation when the inertia force in (66) becomes zero

F i
I = mT i

jk

dxj

ds

dxk

ds
= 0, (106)

or, using (79) (for m 6= 0)

−Ω . . i
jk

dxj

ds

dxk

ds
+gim(ggsΩ . . s

mk +gksΩ . . s
mj )

dxj

ds

dxk

ds
= 0.

(107)
Since Ωmkj is skew-symmetric in indices m and k,
then it follows from (107) that in inertial refer-
ence frames the torsion Ωmkj of the space is skew-
symmetrical in all the three indices

Tijk = −Tjik = −Tikg = −Ωijk, (108)

but not equal to zero and coincides with torsion field
T i

jk. The energy-momentum tensor (97) in these
case is symmetrical in the indices j and m to yield

Tjm =
1
ν

(Ω . . i
smΩ . . s

ji − 1
2
gjmΩ . ji

s Ω . . s
ji ). (109)

In general case torsion Ω . . i
jk has 24 independent com-

ponents and it can be represented as the sum of three
irreducible parts as follows

Ωi
.jk =

2
3
δi

[kΩj] +
1
3
εn

jksΩ̂
ŝ + Ω̄i

.jk, (110)



12where

Ωi
.jk = gimgksΩ . . s

mj , (111)

and Ωj – the vector, Ω̂j – the pseudovector and Ω̄ i
.jk

–the traceless part of torsion are given by

Ωj = Ωi
.ji, (112)

Ω̂j =
1
2
εjinsΩins, (113)

Ω̄s
.js = 0, Ω̄ijs + Ω̄jsi + Ω̄sij = 0, (114)

where εijkm is a fully skew-symmetrical Levi-Civita
symbol.

Since in inertial reference frames the torsion Ωijs

is skew-symmetrical in all the three indices, among
the irreducible parts of torsion in inertial frames only
the pseudovector (113) is nonzero.

We can define the auxiliary pseudovector hm

through the field (113) as follows

Ωijk = εijkmhm, Ωijk = εijkmhm (115)

and write the tensor (109) as

Tjm =
1
2ν

(hjhm − 1
2
gjmhihi). (116)

If the pseudovector hm is light-like, it can be rep-
resented as

hm = Φlm, lmlm = 0, Φ = Φ(xi). (117)

In this case the matter tensor (116) becomes

Tjm =
1
ν

Φ2(xi)lj lm, (118)

and the density of matter is given by

ρ =
1

νc2
Φ2(xi). (119)

If the pseudovector hm is time-like, it can conve-
niently be represented as

hm = ϕ(xi)um, (120)

where

umum = 1 (121)

and ϕ(xi) is a scalar quantity.
Substitution of (120) into the tensor (116) yields

the energy-momentum tensor of the form

Tjm =
1
ν

ϕ2(ujum − 1
2
gjm) = −ρc2(ujum − 1

2
gjm),

(122)

were

ρ = − 1
νc2

ϕ2(xi) (123)

density of the matter. Tensor (118) looks like an
energy-momentum tensor of isotropic radiation, and
the tensor (122) in its structure looks rather like the
energy-momentum tensor of an ideal liquid. Thus, in
a post-Einstein’s approximation the matter density
is defined through squares of torsion fields Φ and ϕ
according to (119) and (123).

A. Motion of the torsion matter

The left-hand side of Einstein like equations (B.1)
is always symmetrical in indices j and m, therefore
these equations can be written as

Rjm − 1
2
gjmR = νT(jm), (124)

T[jm] =
1
ν

(−∇iΩ . . i
jm −∇mAj −AsΩ . . s

jm ) = 0, (125)

where

Aj = T i
ji, (126)

The equality (??) should be considered as a con-
straint which apply on the torsion Ω . . i

jk . At transition
to the Einstein theory the condition(108) is satisfied,
thus (??) vanish and from (??) we find

∇iΩ . . i
jm = 0. (127)

Substituting (115) into (127) gives

hm,j − hj,m = 0.

These equations have two solutions: hm = 0 (a trivial
one), and

hm = Ψ,m,

where Ψ is pseudoscalar. Writing the energy-
momentum tensor (127) through this pseudoscalar,
we have

Tjm =
1
2ν

(Ψ,jΨ,m − 1
2
gjmΨ,iΨ,i). (128)

In quantum field theory the tensor (131) is the
energy-momentum tensor of a massless pseudoscalar
field, where the pseudoscalar Ψ plays the role of the
wave function in quantum equations of motion.

According to the field equations (124), torsion Ω . . i
jm

”tells” geometry how to ”curve”; furthermore, from



13the field equations (124) itself, geometry ”tells” mat-
ter how to move. Using second Bianchi’s identities
for Riemann tensor, we can fined

∇j(Rjm − 1
2
Rgjm) = 0.

Applying this equality to the equations (124),

we shall receive conservation law of the energy-
momentum tensor from which the equations of mo-
tion follows

∇j(Rjm − 1
2
gjmR) = ν∇jTjm = 0, (129)

from which the equations of motion follows.

The right-hand side of (129) yields for tensor (122) the equations of motion of the matter in the form

0 = ∇jTjm = −∇j(ρc2ujum) +
1
2
∇j(ρc2gjm) = −ρc2uj∇ju

m − c2um∇jρuj +
1
2
ρc2∇jg

jm +
1
2
gjmc2∇jρ.

(130)

The first term in the right part of this equality is
equal to zero

−ρc2uj∇ju
m = −ρc2(

dum

ds
+ Γm

knukun) = 0, (131)

as this expression describes geodesic motion in the
Einstein’s theory The third term also equal to zero,
because

∇jg
jm = 0.

For an incompressible fluid we have

∇jρ = 0,

therefore from (122) we shall receive the equation of

continuity

∇j(ρuj) = ∂j(ρuj) + ρukΓj
kj = 0. (132)

In normal (local) coordinates Γj
kj = 0 and the equa-

tion (132) becomes

∂ρ

∂t
+ div(ρv) = 0. (133)

If to substitute here, for example, the density (123)
we shall receive for function ϕ the nonlinear equation

∂ϕ2

∂t
+ div(ϕ2v) = 0.

B. Definition of ν factor in the field equations

We will consider the spherically symmetrical solution of the vacuum equations (A) and (B), which describe
the vacuum excitation with a variable Newton potential and for which the Energy-momentum tensor (97) is
different from zero. This solution has the following characteristics5:
1. Coordinates x0 = u, x1 = r, x2 = θ, x3 = ϕ.
2. Components of the Newman-Penrose symbols

σi
00̇

= (0, 1, 0, 0), σi
11̇

= (1, U, 0, 0), σi
01̇

= ρ(0, 0, P, iP ),

σ00̇
i = (1, 0, 0, 0), σ11̇

i = (−U, 1, 0, 0), σ01̇
i = − 1

2ρP
(0, 0, 1, i)

U(u) = −1/2 + Ψ0(u)/r, P = (2)−1/2(1 + ζζ/4), ζ = x2 + ix3,

Ψ0 = Ψ0(u).

3. Spinor components of the torsion field

ρ = −1/r, α = −β = −α0/r, γ = Ψ0(u)/2r2,



14µ = −1/2r + Ψ0(u)/r2, α0 = ζ/4.

4. Spinor components of the Riemann tensor

Ψ2 = Ψ = −Ψ0(u)/r3, Φ22 = Φ = −Ψ̇0(u)/r2 = −∂Ψ0

∂u

1
r2

.

The Riemann metric of the solution (??) in (quasi) spherical coordinates has the form

ds2 =
(

1− 2Ψ0(t)
r

)
c2dt2 −

(
1− 2Ψ0(t)

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2). (134)

Using the solution (??), we can determine the explicit
form of the energy-momentum tensor (97). Calcula-
tions will show that the tensor is

Tjm = ρc2lj lm, (135)

where ρ is the matter density of a vacuum excitation
given by

ρ = −2Ψ̇o(u)
νc2r2

, Ψ̇o(u) < 0 (136)

and lm is the light like vector lmlm = 0.
We now consider the limiting process Ψo(u) →

Ψo = const of the matter density in the solution
(??). We introduce the auxiliary parameter ξ with
the dimensionality of length

ξ =
π|Ψ̇o|r2

2Ψo
. (137)

Through the parameter ξ the density module (136)
can be represented as ρ = ρ+

ρ =
8πΨo

νc2

1
2πr2

ξ

r2
=

8πΨo

νc2

1
2πr2

ξ

(r2 + ξ2)

(
1 +

ξ2

r2

)
,

(138)

where the + sign implies that the density ρ+ defines
right-hand matter with a positive density and posi-
tive mass. Taking the limit in (138) for ξ → 0, i.e.,
for Ψo(u) → Ψo = const, and using the well-known
formula

1
2πr2

1
π

lim
x→0

(
x

x2 + r2

)
=

1
2πr2

δ(r) = δ(r),

where δ(r) is the three-dimensional Dirac function,
we will get

ρ+ =
8πΨo

νc2

1
2πr2

δ(r) =
8πΨo

νc2
δ(r) = Mδ(r), (139)

where M = const - mass of a point source.

On the other hand, as the source goes stationary, the metric (134) becomes the Schwarzshield metric

ds2 = (1− 2MG

rc2
)c2dt2 − (1− 2MG

rc2
)−1dr2 − r2(dθ2 + sin2 θdϕ2). (140)

(i.e., the solution of Einstein’s equations for a point
source) provided that

Ψ0 =
MG

c2
= const. (141)

Substituting (141) into the equality (139), we will
obtain the value of initially arbitrary factor ν in the

vacuum equations (B.1)

ν =
8πG

c4
. (142)

In that case the equations (B.1) coincide with Ein-
stein’s equations that describe the gravitational field
of a point source with constant mass M . It is seen
from this relationship that when a vacuum excitation
becomes stationary the matter density distributed



15over space coincides with the matter density for a
point particle (Dirac’s δ-function describes the dis-
tribution of a point source). The fact that a material
point appears in a purely field theory as a limiting
stationary case is one of the most important results
of the new theory.

VIII. CONCLUSION

More than 300 years we have been applying New-
ton’s mechanics to explain non-relativistic mechani-
cal experiments. Although Newton’s mechanics has
been generalized three times: by the special relativity
theory, general relativity theory, and quantum me-
chanics, there remains a possibility for its further
generalization. The fourth generalization of New-
tonian mechanics has become possible with regards
that new mechanics has been based upon the follow-
ing: 1) Clifford-Einstein program for geometrization
of all physics equations, including classical mechan-

ics, (Unified Field Theory2); 2) Cartan’s idea about
the connection of the torsion of space with physical
rotation7.

Einstein assumed the solution of these problems
in the geometrization of the right hand of its equa-
tions. Generalizing Einstein’s vacuum equations, we
have introduce structural Cartan equations geometry
of absolute parallelism as the new vacuum equations.
It has allowed us not only to find a general view of
geometrized energy-momentum tensor, but also to
specify connection torsion of the space of absolute
parallelism with a field of inertia. The mass of any
object in the generalized theory has purely field na-
ture and is defined as a measure of field of inertia.
The rest mass of such object can be operated, using
rotation of masses of which the object consists. The
first experimental acknowledgement of these theoret-
ical conclusions are already received by us at research
of the dynamics so called 4D gyroscope8.
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221 A.Einstein used the torsion of absolute parallelism
determining torsion as

Λi
jk =

1

2
(∆i

jk −∆i
kj),

where

∆i
jk = ei

aea
j,k, , k =

∂

∂xk
, i, j, k... = 0, 1, 2, 3, a, b... = 0, 1, 2, 3

–connection of absolute parallelism,

Λi
jk = −Ω . . i

jk

– anholonomity object in J. Schouten definition. In
the same article A. Einstein has specified, that when
torsion Λi

jk ( anholonomity object ) is equal to zero
the space becomes Minkovski space.


