О НЕКОТОРЫХ СВЯЗЯХ ЧИСЕЛ π , e (ЧИСЛО ЭЙЛЕРА), γ (ПОСТОЯННАЯ ЭЙЛЕРА), ϕ (ЗОЛОТОЕ СЕЧЕНИЕ), 10 И ДР. (перевод с украинского журнала [10])

Известно, что $\pi = 3,141592654$; e = 2,718221828; $\gamma = 0,577216649$; $\phi = 1,61803989$ ($\phi = 0,618033989$); 10 — основание арабской позиционной системы счисления; используются как определённые постоянные величины, между которыми существуют достаточно интересные связи, на которые мы хотели бы обратить внимание читателя.

Предварительно предложим ввести функцию $y = \phi^x = gold(x)$ аналогично как и для $y = e^x = exp(x)$.

В работе [1] доказывается универсальность числа $e^e = 15,15426224$, то есть exp (exp(1)), при определении свойств на уровнях критического состояния природных систем, а о значимости золотого сечения свидетельствуют публикации [2,3,4,5,6,7] и др., а сейчас особенно активизировались они на страницах электронного издания -- Академии Тринитаризма.

Связь числа e^e с золотым сечением и 10^1 и 10^0 с абсолютной относительной ошибкой $|\delta|=0,1721\%$ может быть представлена в таком виде:

$$e^e = 10\phi - 1 = 15,18033989,$$

а значение ошибки возможно потому, что эти числа сами по себе приближённые.

Определим некоторые и другие соотношения с указанием абсолютной относительной ошибки.

осительной ошибки.
$$e = 2\phi^{\varphi} = exp(1) = 2gold(gold(-1)) \qquad |\delta| = 0,9403\%;$$

$$e^{e^{-1}} = \phi^{2\varphi^2} = exp(exp(-1)) = gold(2gold(-2)) \qquad |\delta| = 0,0336\%;$$

$$e^{e^2} = 10^3 \phi = exp(exp(2)) = 10^3 gold(1) \qquad |\delta| = 0,0086\%;$$

$$e^{e^e} = 10^7 \varphi^2 = (exp(exp(exp(1))) = 10^7 gold(-2) \qquad |\delta| = 0,0001\%;$$

$$e^{e^{e^e}} = 10^{17} \varphi^{17/4} = exp(exp(exp(exp(1))) \qquad |\delta| = 0,4449\%;$$

$$= 10^{17} gold(-4,25))$$

$$|\delta| = 0,0001\%;$$

$$|\delta| = 0,0001\%;$$

$$|\delta| = 0,0001\%;$$

$$|\delta| = 0,0001\%;$$

$$e^3 = 20 = exp(3) = 2 \cdot 10^1$$
 $|\delta| = 0.4277\%;$

$$e^2/_{e^e} = ln\phi = \frac{exp(2)}{exp(exp(1))} = ln (gold(1))$$
 $|\delta| = 0.6377\%;$

$$\pi \cdot \phi^{\phi} = \phi^4 = \pi \cdot gold(gold(1)) = gold(4) \qquad |\delta| = 0.1647\%.$$

Достаточно интересный результат может быть использован в исследованиях:

$$lg(e^e)=10\phi-5=(lg(exp(exp(1)))=10gold(1)-5 ~~|\delta|=0,0032\%;$$
 или

$$e^{\phi} - \phi^e = 0.5\phi^2 = (exp(gold(1)-gold(exp(1))=0.5gold(2))$$
 $|\delta| = 2.683\%$
 $5\pi = 6\phi^2 = 6 \ gold(2)$ $|\delta| = 0.0015\%$

Кое-что можно представить и о тригонометрических функциях (в RAD):

$$tg(e^e) = -\varphi = tg(exp(exp(1))) = -gold(-1))$$
 $|\delta| = 0.0283\%;$

$$ctg(e^e) = -\phi = ctg(exp(exp(1))) = -gold(1))$$
 $|\delta| = 0.0283\%;$

$$tg(k\pi - e^e) = \varphi = tg(k\pi - exp(exp(1))) = gold(-1)$$
 $|\delta| = 0.0283\%$;

а также к значению $2cos\left(\frac{\pi}{5}\right) = gold(1)$, которые авторы в публикациях [5;6] представляют постоянно при определении хрусотомии (золотого сечения), дополним ещё и такие:

$$2\cos\left(2^{\pi}/_{5}\right) = gold(-1) = \varphi;$$

$$2\cos\left(3^{\pi}/_{5}\right) = -gold(-1) = -\varphi;$$

$$2\cos\left(4^{\pi}/_{5}\right) = -gold(1) = -\phi.$$

Кроме этого, заслуживают внимание и такие соотношения $e^x = exp(x)$, $\phi^x = gold(x)$ и π с постоянной Эйлера:

$$\gamma = gold(exp(1)) - \pi$$
 с точностью $|\delta| = 3,4275\%$, то есть $0,577432672 = 3,699025326 - 3,141592654 \approx 0,577216649$.

К этому, также дополним, что ряд обратных чисел Фибоначчи

$$\sum_{k=1}^{\infty} \frac{1}{F(k)} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{8} + \frac{1}{13} + \dots + \frac{1}{F(k)} + \dots$$

имеет своим пределом число $\sqrt{5+\gamma}$, то есть

$$\sum_{k=1}^{\infty} \frac{1}{F(k)} = \sqrt{5 + \gamma}.$$

Заметим, что числовые ряды $\sum_{k=0}^{\infty} gold(-k)$ и $\sum_{k=1}^{\infty} gold(-k)$

имеют своим пределом соответственно ϕ^2 и ϕ , то есть gold(2)и gold(1) или

$$\sum_{k=0}^{\infty} gold(-k) = \phi^2 = gold(2),$$

$$\sum_{k=1}^{\infty} gold(-k) = \phi = gold(1).$$

Заслуживают внимание обнаруженные нами связи с некоторыми физическими постоянными и коэффициентами.

1.Известно, что заряд электрона $q_0 = -1,602127 \cdot 10^{-19}$ Kл, что по нашему мнению должно быть $q_0 = -\phi \cdot 10^{-19}$ Kл, или

 $q_0 = -gold(1) \cdot 10^{-19} \, \text{Кл}$ и при этом абсолютная относительная ошибка составляет $|\delta| = 0,180379\%$, а тогда

$$1EB = gold(1) \cdot 10^{-19}$$
Дж = $gold(1) \cdot 10^{-12}$ эрг.

2.Постоянная Планка $\overline{h} = 1,054 * 10^{-34} Дж\cdot c$, составляет, как на наше

мнение,
$$\overline{h} = 10^{-34} \cdot gold \left(\frac{1}{8} \right) = \phi^{0,125} \cdot 10^{-34}$$
 Дж. с абсолютной относительной ошибкой $|\delta| = 0,7600\%$.

- 3. Постоянная земного притяжения определяется в литературе [8] как $g=9,80665~\text{m/c}^2$, а мы считаем, что это $g=\pi^2=9,869604401~\text{m/c}^2$, с абсолютной относительной ошибкой $|\delta|=0,6420\%$.
- 4. Мощность в 1 л.c. = 735,499 Bt[8], или же $1 \text{ л.c.} = 100 \text{e}^2 \text{Bt} = 100 * exp}$ (2) Bm с абсолютной относительной ошибкой $|\delta| = 0,4632\%$.
- 5. Объём мирового океана составляет $1,3\cdot 10^{12}\kappa M^3$ [8], то есть это $0,5gold(2)\cdot 10^{12}=0,5\phi^2\cdot 10^{12}$, при этом $|\delta|=0,6934\%$.
- 6. Гравитационная постоянная $k=6,67\cdot10^{-11}$ нм/кг²[8], то есть это $k=gold(4)\cdot10^{-11}=\phi^4\cdot10^{-11}$ нм/кг² с точностью $|\delta|=2,6860\%$.
- 7. Разность между нулевым показателем шкалы Цельсии и шкалы Кельвина составляет t^0 =273,15[8], то есть t^0 = $100 * exp(1)^0 = 100 * e^0$ с точностью $|\delta| = 0.4839\%$.
- 8. Радиус орбиты луны $\varphi^2 \cdot 10^9 \text{м} = gold(-2) \cdot 10^9 \text{м} = 0,3844 \cdot 10^9 \text{м}$ с точностью $|\delta| = 0,2434\%$.
 - 9. Пуд равен $16{,}3805\kappa z = 10 \cdot \phi = 16{,}1803 \ \kappa z$ с разностью $\Delta = 0{,}2002 \ \kappa z$.
- 10. В древней Греции существовал гномон «золотого сечения», который распределяет октаву в устойчивой пропорции. Пределы гномона в

соответствии к критическим константам для процессов устойчивого типа свидетельствуют о том, что первые шесть критических констант имеют в гномоне аналоги[1]. Значение гномона «золотого сечения», как мы определили, соответствуют кратным значениям gold(0,125k) (k=0,1,2...8)(см.табл.1). Кроме этого, заслуживает внимания и тот факт [9], который свидетельствует о том, что частота звуковых колебаний 261,63 Γu соответствует ноте «до» или составляет $100*gold(2)=100*\phi^2$, с точностью $|\delta|=0,2108\%$. Это позволяет утверждать, что октаву в музыке следует рассматривать не как ряд их значений частей с интервалом ${}^{12}\sqrt{2}$, а с интервалом $gold(0,125k)(k=\overline{1,12})$.

При этом

$$\Delta = \sqrt[12]{2} - gold(0,125) = \sqrt[12]{2} - \phi^{0,125} = 0,0025343$$
 и абсолютная относительная ошибка будет составлять $|\delta| = 0,2386\%$.

Это по всей видимости и свидетельствует о том, что музыкальные произведения великих композиторов действительно соответствуют гармонии Вселенной.

Таблица 1 Соотношение гномона «золотого сечения», критических постоянных, значений степени «золотой пропорции - ϕ » и значений степени e.

Уровень критичес- кой постоянной	Критичес- кая постоянная N _[k]	Значение $exp(x) = e^x$	Гномон «золото- го сечения »	Значение $\phi^x = gold(x)$	Значение $ \delta \%$, между $N_{[k]}$ и $gold(x) = \phi^x$
-1	1,000		1,000	gold(0)=1,0000 gold(1/4)=1,1278	
-2	1,274	exp(2/8)=1,2840	1,272	gold(2/4)=1,2720	0,1556
-3	1,445	exp(3/8)=1,4550	1,435		0,7228
-4	1,649	exp(4/8)=1,6487	1,618		1,9138
-5	1,834	exp(5/8)=1,8682	1,825	gold(3/4)=1,4346	0,4987
-6	1,998	<i>exp</i> (6/8)=2,1170	2,058	gold(4/4)=1,6180	2,9249
-7	_	exp(7/8)=2,3989	-	gold(7/4)=2,3213	-
-8	-	exp(8/8)=2,7183	-	gold(8/4)=2,6180	-

P.S. Достаточно глубоко нами проведены исследования по формированию музыкальной октавы на основе значения $gold(0,125k)(k=\overline{1,12})$ в работе [11], которую можно найти на сайте Украинской Национальной библиотеки им. В.И.Вернадского.

Литература

- 1. Жирмунский А.В., Кузьмин В.И. Критические уровни в развитии природных систем. Л.:Наука,1990. 223 с.
- 2. Ткаченко И.С., Стахов А.П., Гиперболическая тригонометрия Фибоначчи // ДАН Украины. 1993. -№7. С.9-14.
- 3. Боднар О.Я. Геометрия филлотаксиса // Докл. АН Украины .-1992.-№9.-С.9-14.
- 4. Шевелев И.Ш., Марутаев М.А., Шмелев И.П.Золотое сечение: Три взгляда на природу гармонии. М.: Стройиздат,1990.-343 с.
- 5. Стахов А.П. Коды золотой пропорции. М.: Радио и связь, 1984. 152 с. (Кибернетика).
- 6. Воробьев Н.Н. Число Фибоначчи. M.: Hayкa, 1978. 144 с.
- 7. Тимердинг Г.Е. Золотое сечение. Пер. с нем. Петроград: научное книгоиздательство, 1924. 86с.
- 8. Гильде В., Альтгрихер 3.С микрокалькулятором повсюду: Пер.с нем. М.: Мир, 1988. 200 с.
- 9. Маковецкий П.В. Смотри в корень!: Сборник любопытных задач и вопросов. 6 е издание. М.: Наука. Гл.ред.физ.-мат.лит.,1991. с.209-214.
- 10. Ткаченко І.С. Про деякі зв'язки чисел π , e (число Ейлера), γ (стала Ейлера), ϕ (золотий перетин), 10 та інші.// Вісник Львівського фінансовоекономічного інституту: Збірник наукових статей (Економ. науки)/Гол. ред. Буряк Л.Ю. Львів:2002. с.104-107.
- 11. Ткаченко І.С., Ткаченко М.І. Моделювання гармонійного коливального процесу на основі функцій Фібоначчі та Люка.//Інформаційні технології та комп'ютерна інженерія: Міжн. науково-технічний жн., ВНТУ, −2008, №3(13). –c.26-31.