Модели представления единицы золотой пропорцией

1. Модели представления золотой пропорции с участием единицы

Стало классическим представление золотой пропорции с участием единицы, принимаемой за исходную величину, в виде непрерывного повторного корня и непрерывной цепной дроби. Здесь и далее термин золотая пропорция станем использовать без кавычек.

Приведем классические представления золотой пропорции в таблице 1.

Таблица 1 Модели представления золотой пропорции с участием единицы

Уравнение и арифметический корень	№	Исходные тождества		Фрактальные корень и дробь
Прямая пропорция	1	$\Phi^2 = 1 + \Phi$	$\Phi = \sqrt{1 + \Phi}$	$\Phi = \sqrt{1 + \sqrt{1 + \sqrt{1 + \dots}}}$
$\Phi^2 - \Phi - 1 = 0$ $\Phi = \frac{1 + \sqrt{5}}{2} = 1,618$	2	$\Phi = 1 + \frac{1}{\Phi}$	$\Phi = 1 + \frac{1}{\Phi}$	$\Phi = 1 + \frac{1}{1 + \frac{1}{1 + \dots}}$
	3	$\phi^2 = 1 - \phi$	$\phi = \sqrt{1 - \phi}$	$\phi = \sqrt{1 - \sqrt{1 - \sqrt{1 - \dots}}}$
Обратная пропорция $\phi^2 + \phi - 1 = 0$ $\phi = \frac{\sqrt{5} - 1}{2} = 0,618$	4	$\phi = \frac{1}{\phi} - 1$	$\phi = -1 + \frac{1}{\phi}$	$\phi = -1 + \frac{1}{-1 + \frac{1}{-1 + \dots}}$ $\phi = \frac{1}{\frac{1}{\dots - 1} - 1} - 1$

Фрактальные представления порождаются путем извлечения квадратного корня из суммы $\Phi = \sqrt{1+\Phi}$ и разности $\phi = \sqrt{1-\phi}$ целого и величины пропорции, а также из суммы $\Phi = \frac{1}{\Phi} + 1$ и разности $\phi = \frac{1}{\phi} - 1$ обратного значения пропорции и целого.

Прямая золотая пропорция обозначена здесь заглавной буквой Φ , а обратная – прописной строчной ϕ . При этом предпочтительнее обозначение относительных (безразмерных) показателей прописными буквами, отдав заглавные буквы для обозначения показателей, измеряемых в абсолютных единицах, имеющих мерность.

Подчеркнув ещё раз, что из исходных тождеств (1) - (4) таблицы 1 следуют модели представления собственно золотой пропорции с помощью единицы, принимаемой за исходную величину, изменим задачу на обратную.

2. Модели представления единицы с помощью золотой пропорции

Найдем модели выражения именно единицы с помощью золотой пропорции, принимаемой за исходную заданную величину и процесс.

Результаты сведем в таблицу 2.

 Таблица 2

 Модели представления единицы с помощью золотой пропорции

Уравнение и арифметический корень	№	Исходные тождества		Фрактальные корень и дробь
Прямая пропорция	1*	$1 = \Phi^2 - \Phi$	$1 = \Phi(\Phi - 1)$	$1 = \Phi(\Phi - \Phi(\Phi - \Phi(\Phi - \ldots)))$
$\Phi^2 - \Phi - 1 = 0$ $\Phi = \frac{1 + \sqrt{5}}{2} = 1,618$	2*	$1 = \Phi - \frac{1}{\Phi}$	$1 = \Phi - \frac{1}{\Phi}$	$1 = \Phi - \frac{\Phi - \frac{\Phi - \dots}{\Phi}}{\Phi}$
	3*	$1 = \phi^2 + \phi$	$1 = \phi(\phi + 1)$	$1 = \phi(\phi + \phi(\phi + \phi(\phi + \ldots)))$
Обратная пропорция $\phi^2 + \phi - 1 = 0$ $\phi = \frac{\sqrt{5} - 1}{2} = 0,618$	4*	$1 = \frac{1}{\phi} - \phi$	$1 = \frac{1}{\phi} - \phi$	$1 = -\phi + \frac{-\phi + \frac{-\phi + \dots}{\phi}}{\phi}$ $1 = \frac{\frac{\dots}{\phi} - \phi}{\phi} - \phi$ $1 = \frac{\frac{\dots}{\phi} - \phi}{\phi} - \phi$

Сохраним в тексте детальные выкладки, не смотря на их очевидность.

1. Из
$$\Phi^2 = 1 + \Phi$$
 следует

$$1 = \Phi^2 - \Phi$$
.

Приведем выражение к виду, пригодному для фрактального процесса, путем получения в правой части Φ и единицы:

$$1 = \Phi(\Phi - 1).$$

Придав процессу представления единицы фрактальность, получим

$$1 = \Phi(\Phi - 1) = \Phi(\Phi - \Phi(\Phi - 1)) = \Phi(\Phi - \Phi(\Phi - \Phi(\Phi - 1))) = \Phi(\Phi - \Phi(\Phi - \Phi(\Phi - \Phi(\Phi - 1)))).$$

Математически более строго запишем результат в виде

$$1 = \Phi \lim_{n \to \infty} (\Phi - \Phi(\Phi - \Phi(\Phi - \dots))).$$

Упустив знак предела, оставим

$$1 = \Phi(\Phi - \Phi(\Phi - \Phi(\Phi - \dots))).$$

$$1 = \Phi(\Phi - \Phi(\Phi - \Phi(\Phi - \dots)))$$

$$(1*)$$

2. Из
$$\Phi = 1 + \frac{1}{\Phi}$$
 следует

$$1 = \Phi - \frac{1}{\Phi}.$$

Придав процессу представления единицы фрактальность, найдем

$$1 = \Phi - \frac{1}{\Phi} = \Phi - \frac{\Phi - \frac{1}{\Phi}}{\Phi} = \Phi - \frac{\Phi - \frac{1}{\Phi}}{\Phi} = \dots = \Phi - \frac{\Phi - \frac{\Phi - \dots}{\Phi}}{\Phi};$$

$$1 = \Phi - \lim_{n \to \infty} \frac{\Phi - \frac{\Phi - \dots}{\Phi}}{\Phi}.$$

Упустив знак предела, запишем

$$1 = \Phi - \frac{\Phi - \frac{\Phi - \dots}{\Phi}}{\Phi}.$$

$$1 = \Phi - \frac{\Phi - \frac{\Phi - \dots}{\Phi}}{\Phi}$$

$$1 = \Phi - \frac{\Phi - \frac{\Phi - \dots}{\Phi}}{\Phi}$$

Примечание. Выражение (2*) можно найти и из (1*):

$$1 = \Phi(\Phi - \Phi(\Phi - \Phi(\Phi - \dots))); \frac{1}{\Phi} = \Phi - \Phi(\Phi - \Phi(\Phi - \dots)); \frac{1}{\Phi} - \Phi = -\Phi(\Phi - \Phi(\Phi - \dots));$$

$$\Phi - \frac{1}{\Phi} = \Phi(\Phi - \Phi(\Phi - \dots)); \frac{\Phi - \frac{1}{\Phi}}{\Phi} = \Phi - \Phi(\Phi - \dots); \frac{\Phi - \frac{1}{\Phi}}{\Phi} - \Phi = -\Phi(\Phi - \dots);$$

$$\Phi - \frac{\Phi - \frac{1}{\Phi}}{\Phi} = \Phi(\Phi - \dots); \dots, \Phi - \frac{\Phi - \frac{\Phi - \dots}{\Phi}}{\Phi} = 1.$$

3. Из
$$\phi^2 = 1 - \phi$$
 следует

$$1 = \phi^2 + \phi$$
.

Приведем выражение к виду, пригодному для фрактального процесса, путем получения в правой части ϕ и единицы:

$$1 = \phi(\phi + 1).$$

Придав процессу фрактальность, получим

$$1 = \phi(\phi + 1) = \phi(\phi + \phi(\phi + 1)) = \phi(\phi + \phi(\phi + \phi(\phi + 1))) = \phi(\phi + \phi(\phi + \phi(\phi + \phi(\phi + \dots)))).$$

Запишем результат в виде

$$1 = \phi \lim_{n \to \infty} (\phi + \phi(\phi + \phi(\phi + \dots)));$$

$$1 = \phi(\phi + \phi(\phi + \phi(\phi + \dots))).$$

$$1 = \phi(\phi + \phi(\phi + \phi(\phi + \dots)))$$

$$1 = \phi(\phi + \phi(\phi + \phi(\phi + \dots)))$$

4. Из
$$\phi = \frac{1}{\phi} - 1$$
 следует

$$1 = \frac{1}{\phi} - \phi.$$

Фрактальность процесса порождает:

$$1 = \frac{1}{\phi} - \phi = \frac{\frac{1}{\phi} - \phi}{\phi} - \phi = \frac{\frac{1}{\phi} - \phi}{\phi} - \phi = \dots = \frac{\frac{\dots - \phi}{\phi} - \phi}{\phi} - \phi; 1 = \lim_{n \to \infty} \frac{\frac{\dots - \phi}{\phi} - \phi}{\phi} - \phi;$$

$$1 = \frac{\frac{\cdots}{\phi} - \phi}{\phi} - \phi; \ 1 = -\phi + \frac{-\phi + \frac{-\phi + \dots}{\phi}}{\phi}.$$

$$\frac{\cdots}{\phi} - \phi}{1 = \frac{\phi}{\phi} - \phi}$$

$$1 = \frac{\phi}{\phi} - \phi$$

$$1 = \frac{\phi}{\phi} - \phi$$

Примечание. Выражение (4*) можно найти из (3*):

$$1 = \phi(\phi + \phi(\phi + \phi(\phi + \dots))); \frac{1}{\phi} = \phi + \phi(\phi + \phi(\phi + \dots)); \frac{1}{\phi} - \phi = \phi(\phi + \phi(\phi + \dots));$$

$$\frac{\frac{1}{\phi}-\phi}{\phi}=\phi+\phi(\phi+\ldots); \ \frac{\frac{1}{\phi}-\phi}{\phi}-\phi=\phi(\phi+\ldots); \ldots; \ \frac{\frac{\cdots}{\phi}-\phi}{\phi}-\phi=1.$$

Полагаю, что изложенное в этом подразделе является новым материалом, не припоминаемое в источниках, известных мне.

3. Модели тождественности единого целого с участием прямой и обратной золотой пропорции

1. Выражения (1*) и (3*) тождественны, следовательно

$$\Phi(\Phi - \Phi(\Phi - \Phi(\Phi - \ldots))) = \phi(\phi + \phi(\phi + \phi(\phi + \ldots))).$$

Придадим последнему равенству зеркально-симметричный вид:

$$\Phi(\Phi - \Phi(\Phi - \Phi(\Phi - \dots))) = (((\dots + \phi)\phi + \phi)\phi + \phi)\phi. \tag{5*}$$

Подчеркнем тождественность выражения (5*) единице в виде следующей записимодели:

$$\Phi(\Phi - \Phi(\Phi - \Phi(\Phi - \ldots))) = (((\ldots + \phi)\phi + \phi)\phi + \phi)\phi$$

Модель (5*) символизирует операции умножения.

2. Выражения (2) и (4) также тождественны единице, откуда

$$\Phi - \frac{\Phi - \frac{\cdots}{\Phi}}{\Phi} = \frac{\frac{\cdots}{\phi} - \phi}{\phi} - \phi. \tag{6*}$$

$$\Phi - \frac{\Phi - \frac{\cdots}{\Phi}}{\Phi} = \frac{\frac{\cdots}{\phi} - \phi}{\frac{\phi}{\Phi}} - \phi$$

Модель (6*) символизирует операции деления.

P.S. О возможности космологической интерпретации

Тождества с (1*) по (4*) наводят на мысль о попытке привлечения их к схематическому описанию модели мироздания, что делает ряд авторов в последнее время – время математики гармонии.

Основой гипотезы, становящейся распространенной, является предположение, что в основе мироздания лежит процесс, порождающий золотую пропорцию из единичного целого.

Можно выдвинуть гипотезу о том, что в основе мироздания лежит сохранение целого путем его функционирования на базе золотой пропорции и по закону золотой пропорции.

Идея подкрепляется тождествами (5*) и (6*).

На этом пути будем обращаться к фразе Р. Быкова: «Все ищут выход, не ищут вход».

В виду серьезности вопроса, требующего углубленного осмысления, не станем далее распространять свои соображения на тему о нахождении выражениям с (1*) по (6*) места в механизме функционирования (и сотворения) мироздания, удалив из текста материал, довольно обширный, но туманный на настоящий момент.

© Шенягин В.П., 2012